
Hindawi Publishing Corporation
Journal of Lipids
Volume 2011, Article ID 342576, 18 pages
doi:10.1155/2011/342576

Review Article

Regulation of Phosphatidic Acid Metabolism by
Sphingolipids in the Central Nervous System
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This paper explores the way ceramide, sphingosine, ceramide 1-phosphate, and sphingosine 1-phosphate modulate the generation
of second lipid messengers from phosphatidic acid in two experimental models of the central nervous system: in vertebrate rod
outer segments prepared from dark-adapted retinas as well as in rod outer segments prepared from light-adapted retinas and in rat
cerebral cortex synaptosomes under physiological aging conditions. Particular attention is paid to lipid phosphate phosphatase,
diacylglycerol lipase, and monoacylglycerol lipase. Based on the findings reported in this paper, it can be concluded that proteins
related to phototransduction phenomena are involved in the effects derived from sphingosine 1-phosphate/sphingosine or
ceramide 1-phosphate/ceramide and that age-related changes occur in the metabolism of phosphatidic acid from cerebral cortex
synaptosomes in the presence of either sphingosine 1-phosphate/sphingosine or ceramide 1-phosphate/ceramide. The present
paper demonstrates, in two different models of central nervous system, how sphingolipids influence phosphatidic acid metabolism
under different physiological conditions such as light and aging.

1. Introduction

Sphingolipids are integral components of eukaryotic cell
membranes. There is increasing evidence that sphingolipids
are involved in the regulation of various cellular functions
such as the action of enzymes and receptors, membrane
transport, and signal transduction [1–4] The sphingolipid de
novo synthesis pathway is an evolutionarily conserved route
that generates and interconverts various sphingolipids such
as Cer, Sph, C1P, and S1P [5].

Cer is the central molecule in the metabolism of sph-
ingolipids. It is produced via de novo biosynthetic pathway
beginning with the condensation of serine and palmitoyl-
CoA by the enzyme serine palmitoyl-CoA transferase. Cer
is also produced by the hydrolysis of sphingomyelin (SM)
by sphingomyelinases. It can be either phosphorylated by
Cer kinase (Cerk) to C1P or used in the synthesis of SM
or glycosphingolipids. Cer can also be broken down by
ceramidases to Sph, which, in turn, is phosphorylated by
Sph kinases (SphK) to generate S1P. The latter is degraded

by specific phosphatases and LPPs that regenerate Sph or
by a lyase that cleaves it irreversibly into ethanolamine 1-
phosphate and palmitaldehyde [6] (Figure 1). The enzymes
involved in sphingolipid metabolism are regulated by phys-
iological and environmental stimuli. Increasing evidence
points to a role of this signaling pathway in response to
stress, activation of receptors, and pathogenesis [7–9]. Cer
is a family of about 50 different molecular species that are
characterized by various acyl chains. Highly hydrophobic Cer
is generated by membrane-associated enzymes and exerts
its effects either in close proximity to the generation site or
require specific transport mechanisms to reach its targets
in another intracellular compartment [10]. Cer appears to
be able to flip-flop across the membrane [11]. However,
spontaneous interbilayer transfer is extremely slow [12].
Therefore, the transfer of Cer between intracellular com-
partments is facilitated by vesicular transport pathways [13]
or by a nonvesicular pathway involving a transfer protein
from its generation site in the endoplasmic reticulum to the
Golgi where it is required for SM synthesis [14]. Cer itself is
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Figure 1: Metabolic pathways of sphingolipid metabolism. Ceramide (Cer) is either sinthesized by de novo pathway through the sequential
action of serine palmitoyl transferase (SPT), ketosphinganine reductase (3-KR), ceramide synthase (CerS), and dihydroceramide desaturase
(DES), or it is generated from sphingomyelin (SM) hydrolisis by sphingomyelinase enzyme (SMase). Cer could be converted into sphingosine
(Sph) by ceramidase (CDase) action. Ceramide kinase (CerK) and sphingosine kinase (SphK) generate ceramide 1-phosphate (C1P) and
sphingosine 1-phosphate (S1P), respectively.

an important second messenger in various stress responses
and growth mechanisms. Its formation occurs in response
to many stressinducers [7, 15]. The accumulation of Cer in
plasma membranes basically induces significant structural
alterations in the membrane bilayer [16]. In addition, Cer
has been shown to induce transmembrane translocation
of other membrane phospholipid components, ending in
the disappearance of their asymmetric distribution [17]. By
forming membrane microdomains, Cer favors the activity of
certain lipolytic enzymes such as phospholipase A2 [18] it
serves to cluster and aggregate activated receptor molecules
[19], it regulates the intracellular enzymes such as protein
kinase C [20], tyrosine kinases, diacylglycerol kinase, and
phospholipases [21], and it alter gene expression [22].

C1P is another phosphorylated bioactive sphingolipid
whose importance has only recently begun to be appreci-
ated. It is required for the production of prostaglandins
in response to several inflammatory agonists. Lamour et
al. (2007) demonstrate that Cer kinase localizes in areas
where eicosanoid synthesis occurs [23]. Furthermore, C1P
has been found to be involved in the stimulation of cell
proliferation [24], phagocytosis [25], inflammation [26],
and cell survival [27]. The discovery of phosphatases such
as lipid phosphate phosphatases (LPPs) that are able to
hydrolyze C1P [28] together with the existence of specific Cer
kinases [29] suggested that Cer and C1P are physiologically
interconvertible. C1P was, in fact, found to inhibit the
activation of acid sphingomyelinase and the subsequent
generation of Cer [29].

Sph may also be an important physiological regulator
because it can not only inhibit protein kinase C but also
induce cell cycle arrest and apoptosis. S1P has different

roles in cell growth and survival, angiogenesis, vasculoge-
nesis, neuritogenesis, and immune function. The number
of reports on S1P-mediated cell signaling has increased
in recent years [30, 31]. Extracellular actions of S1P are
mediated by its interaction with a family of five specific
G-protein-coupled receptors (GPCRs) known as S1P1-S1P5
[31–35]. In addition, similar to other potent lipid mediators,
S1P has further intracellular actions independently of these
receptors which are important for the regulation of cellular
functions and various kinases [3, 4, 31]

After summarizing the literature on Cer metabolism,
functions, and established signaling pathways in different
tissues, our purpose in this paper is to put together and
discuss the recently uncovered information that highlights
their possible functions in the retina and synaptic endings.

2. Sphingolipids and Enzymes Related to
Lipid Metabolism

This section summarizes basic knowledge on the modu-
lation of sphingolipids on the enzymes involved in lipid
metabolism.

2.1. Phospholipase A2 (PLA2). Phospholipase A2 superfam-
ily consists of a broad range of enzymes characterized by their
ability to catalyze the hydrolysis of the middle (sn-2) ester
bond of substrate phospholipids. The hydrolysis products
of this reaction, free fatty acids, and lysophospholipids,
which are derived from the activity of a diverse and
growing superfamily of PLA2 enzymes [36], have many
important downstream roles. Previous studies have shown
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that sphingolipid-related compounds such as SM, Cer, C1P,
and S1P regulate the activities of PLA2s, including secretory
PLA2 (sPLA2) [37, 38] and cytosolic PLA2α (cPLA2α) [39–
42]. A cell-permeable Cer analog was found to increase
prostaglandin production, and although Cer alone has little
effect, it was found to enhance interleukin-1-stimulated
PGE2 production [43]. On the other hand, Cer [36] and
calcium ionophore, A23187, were shown to synergize the
translocation of cPLA2α, but again Cer alone had no effect.
Thus, it was suggested that Cer regulates eicosanoid synthesis
by enhancing the activation of cPLA2α. Furthermore, it
has been observed that Cer not only stimulates several
phospholipases [44, 45] but also influences sPLA2IIa fatty
acid specificity [18, 46]. In contrast to SM, which increases
specificity for C20:4 release by preferential inhibition of
C18:2 release, Cer appears to directly stimulate the release
of C20:4 in preference to C18:2 [37]. These findings show
that in the membrane, SM and Cer regulate not only the
activity of phospholipases but also the release of C20:4, the
precursor of eicosanoids [38]. SM/Cer cycle is stimulated by
various hormones, cytokines, and growth factors [47, 48]
and plays an important role in inflammatory responses.
SM is a physiological inhibitor of several lipolytic enzymes,
including sPLA2IIa [49, 50], sPLA2V [49], and cPLA2 [51].
Gesquiere et al. (2002) reported the regulation of sPLA2IIa
and sPLA2V by SM and Cer [49]. Koumanov et al. (2002)
reported that long-chain Cer not only simulates sPLA2IIa but
also promotes the release of polyunsaturated fatty acid from
PE/PS substrate [18]. They proposed that polyunsaturated
phospholipids are specifically excluded from the Cer-rich
lamellar phase, and this results in their increased suscepti-
bility to PLA2 attack. Other reports indicate that C1P rather
than Cer functions as the proximal mediator of arachidonic
acid (C20:4) release [52]. On the other hand, cell-specific
and agonist-dependent events coordinate the translocation
of cPLA2α to the nuclear envelope, endoplasmic reticulum,
and Golgi apparatus [53], thus increasing the enzyme activity
[26]. At these membranes, cPLA2α hydrolyzes membrane
phospholipids to produce C20:4, which initiates pathways
leading to eicosanoid synthesis [53]. This phenomenon is
triggered by C1P. Recent research supports the idea that
C1P allosterically activates cPLA2α and enhances the in
vitro interaction of this enzyme with its membrane substrate
phosphatidylcholine (PC). Thus, C1P increases membrane
residence time of cPLA2, reminiscent of other interactions of
peripheral proteins with phosphatidylinositol and/or diacyl-
glycerol [54, 55]. Gomez-Muñoz and coworkers showed that
C1P is a stimulator of DNA synthesis and that it promotes
cell division [56]. The same group also demonstrated
that C1P blocks apoptosis through the inhibition of acid
sphingomyelinase in macrophages [57]. Furthermore, other
groups have shown that C1P is a mediator of phagocytosis by
promoting phagosome formation [25], and it has also been
demonstrated that Cer kinase and C1P are required for the
activation of the degranulation process in mast cells [58].

Among the recognized PLA2s, there is one that does not
require Ca2+ for activity and is classified as Group VIA iPLA2
and is designated as the β-isoform of iPLA2 (iPLA2β) [59].
The iPLA2β enzyme is involved in phospholipid remodeling

and signal transduction [60], and it contributes to apoptosis
in many cell types [61–63] by a mechanism that has not
yet been elucidated. Recent studies indicate that iPLA2β
participates in endoplasmic reticulum (ER) stress-induced
INS-1 insulinoma cell apoptosis [61, 62]. Furthermore,
iPLA2β activation and subsequent Cer generation are key
components in the crosstalk between ER and mitochondria
following induction of ER stress and their involvement
serves to amplify ER stress-induced apoptosis of insulin-
secreting cells [64]. ER stress leads to iPLA2β association
with mitochondria, and to Cer generation in both ER and
mitochondrial fractions.

2.2. Phospholipase D (PLD) and Lipid Phosphate Phosphatase
(LPPs). PLD hydrolyzes PC in order to produce PA and
choline [65, 66]. PA is a biologically active molecule and
can be hydrolyzed by lipid phosphate phosphatases to yield
diacylglycerol (DAG) [67]. PLD hydrolytic activity can be
triggered by a wide variety of agonists such as hormones,
neurotransmitters, and growth factors [68–70]. The use of
primary alcohols decreases PA production catalyzed by PLD
and eventually disrupts a number of cell events. Based on
the transphosphatidylation reaction, PA has been shown to
function as an important lipid second messenger in a wide
variety of cells, such as membrane trafficking, endocytosis,
exocytosis, cell growth, differentiation, and actin cytoskele-
ton reorganization [65, 66]. Lipid phosphate monoesters,
including PA, lysophosphatidic acid (LPA), S1P, and C1P,
are dephosphorylated by LPPs. They are intermediaries in
phospho- and sphingolipid biosynthesis and they also play
important roles in intra- and extracellular signaling. The
dephosphorylation of these lipids eliminates their signaling
activity and generates products with additional biological
activities or metabolic fates [67]. LPPs isoforms, termed
LPP1 (PAP2a), LPP2 (PAP2c), and LPP3 (PAP2b), have
been cloned and are distributed between endomembrane
compartments and the plasma membrane.

Cer has been proposed to inhibit PLD activity [71, 72]
by preventing its activation by protein kinases C (PKCs)
and monomeric G-proteins [73], by downregulating PLD
gene transcription [74] or by a direct effect on the catalytic
core of the enzyme [74]. Furthermore, PLD is stimulated by
PA and LPA, and this stimulation is abolished by Cer. The
mitogenic effects produced by PLD are inhibited by C2- and
C6-Cer. In contrast, Sph has the opposite effect to Cer on
DNA synthesis. S1P stimulates PLD activity in Swiss 3T3
fibroblasts and C2- and C6-Cer block this activation [75].
Furthermore, cell-permeable Cer inhibits PA-induced [71]
and S1P-induced production of PA by PLD. These results
indicate that PLD pathway is an important target for the
modulation of signal transduction by sphingolipids.

The specific activity of LPP is increased when Cer is
generated by exogenous sphingomyelinase. Therefore, the
increased rate of degradation of PA and LPA could be
important steps in the termination of the mitogenic signal
of these phospholipids, thus inhibiting cell proliferation. Cer
can inhibit some effects of S1P by stimulating its degradation
via LPP, which also hydrolyzes PA [71]. It has been reported
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Table 1: The table summarizes the principal effects produced by sphingolipids on PLA2, PLD, and LPPs enzymes.

Sphingolipid effect Ref.

PLA2

(i) Cer and C1P regulate eicosanoid synthesis through the activation of cPLA2α by favouring
its transmembrane translocation and interaction with PtdCho.

[26, 39–42]

(ii) Cer and SM influence sPLA2IIa fatty acid specificity by stimulating and inhibiting the
release of C20:4 and C18:2, respectively.

[18, 37, 46]

(iii) SM is a physiological inhibitor of sPLA2IIa, sPLA2V, and cPLA2. [49–51]

(iv) Cer and iPLA2β in association with mitochondria participate in endoplasmic reticulum
stress-induced apoptosis.

[61, 64]

PLD

(i) Cer inhibits PLD activity by preventing its activation by PKCs and monomeric G proteins,
by regulating its gene transcription or by direct effect on the catalytic core of the enzyme. Cer
also abolishes the PtdOH/LysoPtdOH-stimulation of PLD.

[71–74]

(ii) Sph and S1P regulate cellular proliferation by activation of PLD which stimulates DNA
synthesis.

[75]

LPPs

(i) Sph inhibits the Mg2+-dependent phosphatidate phosphohydrolase and LPPs activities,
increasing the accumulation of PA relative to DAG.

[76, 77, 80]

(ii) Cer increases the specific activity of LPPs thus reducing the mitogenic activity of their
substrates PthOH and S1P.

[71]

(iii) LPPs modulate responses mediated by S1P or LysoPthOH by regulating their extracellular
availability as ligands and by controlling the accumulation of bioactive lipid phosphates
downstream of G-protein receptor activation.

[81]

that Sph (i) inhibits Mg2+-dependent phosphatidate phos-
phohydrolase and LPP activities [76, 77], (ii) activates PLD
[78], and (iii) stimulates an 80-kDa DAG kinase [79].
These combined actions increase the accumulation of PA
relative to DAG [80], which could also decrease protein
kinase C activation. It has been demonstrated that the
cells with short-chain Cer enhance the dephosphorylation
of both PA [71] and S1P. Furthermore, S1P inhibits PA
hydrolysis in homogenates of Rat2 fibroblasts. The effects
of cell-permeable Cer on the stimulation of the hydrol-
ysis of exogenous PA and S1P by activating a common
phosphohydrolase, mitigate the mitogenic activity of these
bioactive phospholipids. C2-Cer not only destroys S1P signal
but also potentiates an antagonistic one by increasing Cer
production from S1P and endogenous sphingolipids. We
also must take in account that short-chain ceramides are
also hydrolyzed and converted back to long-chain ceramides
thus increasing long-chain ceramide availability. LPPs are
partly expressed as ectoenzymes on the cell surface [81]. LPPs
exert their influence on the physiological responses mediated
by lipid phosphates such as S1P or LPA by regulating the
availability of the extracellular ligand and also by controlling
the accumulation of bioactive lipid phosphates downstream
of G-protein receptor activation [81]. LPPs could hydrolyze
S1P [82–84], which could, in turn, facilitate the rapid uptake
of Sph. Recent studies show that changing the expression
of different LPPs modulates S1P-mediated activation of
extracellular signal-regulated kinases, PLD, DNA synthesis,
cell migration, changes in [Ca2+]i, IκB phosphorylation, and
translocation of NF-κB to the nucleus from the cytoplasm
and interleukin-8 secretion [81, 85–87]. Sigal and coworkers
(2005) [88] showed that increasing LPP activity enhances
the uptake of DAG by cells treated with exogenous PA.
Thus, LPPs convert lipid phosphates which have very limited
ability to enter cells into products that more readily traverse

the plasma membrane and which can then signal directly
or after phosphorylation. The overexpression of LPP-1
increases the accumulation of intracellular S1P in response
to exogenous S1P because of the ectoactivity of LPP-1
[89]. Thus, LPPs can modify the balance of signaling by
S1P through three different mechanisms. Firstly, they can
decrease extracellular S1P concentrations, thus lowering the
activation of cell surface receptors. Secondly, they have been
shown to attenuate signaling downstream of the activation of
surface S1P receptors. Thirdly, by promoting the formation
of intracellular S1P, they increase intracellular signaling by
this agonist. These combined observations add to our under-
standing of the complex interplay between the roles of S1P as
an extracellular versus intracellular signaling molecule.

The above-summarized observations are indicative of
the association between Cer and its derived sphingolipids
with the enzymes that control PA metabolism. The principal
effects exerted by sphingolipids on PLA2, PLD, and LPPs are
summarized in Table 1.

3. Role of Sphingolipids on
PA Metabolism in ROS: Effect of Light

3.1. Lipid Phosphate Phosphatases. Lipid phosphate monoe-
sters, including PA, LPA, S1P, and C1P, are intermediaries in
phospho- and sphingolipid biosynthesis and they also play
important roles in intra- and extracellular signaling. The
dephosphorylation of these lipids terminates their signaling
actions and generates products with additional biological
activities or metabolic fates [67]. As it was described in
the preceding section, the key enzymes responsible for the
dephosphorylation of these lipid phosphate substrates are
termed LPPs. They display isoforms and cell specific
localization patterns which are distributed between
endomembrane compartments and the plasma membrane.
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The role of LPPs in intracellular lipid metabolism and in
the regulation of both intra- and extracellular signaling
pathways that control different cellular functions has been
analyzed in detail [90–93].

ROS are specialized light-sensitive organelles in verte-
brate photoreceptor cells. When light is absorbed in the
photoreceptor, it causes rhodopsin isomerization, initiat-
ing visual excitation. Activated rhodopsin interacts with
transducin (T). TαGTP activates cyclic GMP phospho-
diesterase (PDE), diminishing free cGMP concentration
and consequently affecting sodium channel closing. The
hydrolysis of TαGTP yields the inactive PDE. The cycle is
closed because rhodopsin is phosphorylated by rhodopsin
kinase and arrestin [94]. Lipids in rod outer segments
are of considerable importance not only in providing an
adequate environment for efficient phototransduction but
also in originating the second messengers involved in signal
transduction. ROS have the ability to adapt the sensitivity
and speed of their responses to ever changing conditions
of ambient illumination. Recent evidence has demonstrated
that a major contributor to this adaptation is the light-
driven translocation of key signaling proteins into and
out of ROS, which constitute the cellular place where
phototransduction occurs [95]. It has also been reported
that transducin, arrestin and recoverin [96–98] are proteins
involved in this mechanism. Previous studies revealed the
presence of LPPs and their regulation in isolated ROS from
bovine retina [99–102]. It has also been extensively reported
that the activity of enzymes involved in ROS phospholipid
turnover such as phospholipase C [94, 103], PLA2 [104],
phosphatidylethanolamine N-methyltransferase [102], DAG
kinase [105], PAP2 [101], phosphoinositide-3-kinase [106,
107], and PLD [108] is modulated by light.

In this section, we describe the effects of Cer, Sph, C1P, or
S1P on LPPs, and DAGL activities using three different ROS
populations: (i) DROS obtained from dark-adapted retinas
and purified under dim red light, (ii) LROS obtained from
DROS and exposed to room light for the enzyme assays, and
(iii) BLROS obtained from light adapted retinas and purified
under room light.

Three mammalian LPP isoforms termed LPP1 (PAP2a),
LPP2 (PAP2c), and LPP3 (PAP2b) have been cloned. In
general, LPP1, LPP2, and LPP3 show the major catalytic
efficiency to LPA, PA, and S1P, respectively [109, 110], thus
altering the balance of bioactive lipid mediators [81, 111].
PA and its dephosphorylated product, DAG, have important
functions in signaling and PA itself emerges as a regulator
of pleiotropic signaling responses [112]. In our study, it
was observed that LPP activities are strongly inhibited in
BLROS although no differences in LPP3 levels between
DROS and BLROS were found [113]. This is indicative of the
involvement of a bleaching process in LPP modulation which
could be related either to the absence or to the presence
of a specific protein affected by light-driven translocation.
These findings agree with our previous observations which
demonstrated that light inhibition of LPP activity in ROS is a
transducin-mediated mechanism [101]. PLD is inhibited by
light as it occurs with LPPs [108]. On the other hand, it has
been reported that diacylglyceride kinase (DAG kinase) [105]

is modulated by light in the opposite manner as it occurs with
LPPs and PLD. This could be indicative of the fact that PA
and DAG levels have physiological relevance in ROS under
illumination; that is, under light conditions, an increased
DAG kinase activity promotes a higher PA availability
whereas under dark conditions an increase in PLD/PAP
activities yields a higher DAG availability [101, 108].

It was observed that the major inhibitory effect on PA
hydrolysis is exerted by S1P in DROS and by C1P in BLROS.
Furthermore, C1P was found not to modify LPPs activities
from LROS whereas in the presence of S1P, LPPs activities
were found to be stimulated [113]. The results observed
in the presence of S1P are indicative of the presence of
LPP3 in ROS. This isoform has been localized with PLD in
caveolin-enriched detergent-resistant microdomains where
it metabolizes phospholipase D2-derived PA [114, 115]. C1P
is a potent inhibitor of protein phosphatases (PP) which
have been found to be involved in the inhibition of LPPs
in isolated ROS [116–118]. C1P also seems to exert a direct
action on LPPs. In this respect, it has been reported that
C1P is required for the activation and translocation of other
enzymes involved in lipid metabolism such as cPLA2 [30].
In order to evaluate the effect of peripheral and soluble
protein depletion on LPPs activities, enzyme assays were
carried out in DROS membranes and BLROS were washed
with low ionic strength buffer. The same LPPs activities
and similar dark/light differences were observed both in
ROS and in depleted membranes. In the presence of either
S1P or C1P, DAG generation from PA in depleted DROS
and BLROS was lower than the activity determined in the
presence of PA alone. In order to determine if the effect
of S1P and C1P on DAG production is due either to
their competitive characteristics and/or to Sph and Cer, the
respective dephosphorylation products of S1P or C1P by
LPPs, Sph, or Cer were included in PA hydrolysis assays.
In entire DROS and BLROS, Sph and Cer were found to
inhibit DAG production in a similar percentage. In DROS
and BLROS depleted of soluble and peripheral proteins, Sph
and Cer were found to inhibit DAG formation to a major
extent [113]. These results suggest not only a competitive
effect between PA and S1P or C1P but also a direct effect of
Sph and Cer on LPPs. In this respect, it has been reported
that Sph not only inhibits DAG formation but also stimulates
PA formation, thus inhibiting LPPs and stimulating PLD
and DAGK [119, 120]. Increased intracellular Cer levels
have been involved in the activation of photoreceptor
apoptosis [121]. Analyses of Drosophila phototransduction
have indicated that Cer-kinase-mediated maintenance of Cer
level is important for the local regulation of PIP2 and PLC
during phototransduction [122]. Furthermore, it has been
suggested that LPP2 and LPP3 play an important role in
apoptotic processes. This is supported by the fact that DAG
and Sph, the products of LPPs, are involved in apoptosis
induction [111], while S1P has antiapoptotic roles [123].

3.2. Diacylglycerol Lipase. DAGL is coupled to LPP and these
enzymes appear to work as in an enzymatic complex. DAG
generation, and its partial degradation to MAG by DAGL
is a phenomenon that has been extensively analyzed in
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our laboratory [100] on the premise that DAG produced
from PA for LPP activity is metabolized to MAG [99–101,
118]. The metabolism of DAG generated from PA by LPP
activity in ROS was evaluated under the same experimental
conditions specified by LPPs. MAG, the product of DAGL,
was evaluated in the presence of either Cer, Sph, C1P, or S1P.
Both DAGL and LPPs were inhibited in a similar manner by
light [124, 125]. Low concentrations of S1P and C1P were
found to maximally inhibit MAG production in DROS. MAG
formation was observed to be inhibited by C1P in BLROS
and LROS. The effects of Cer and Sph on DAGL activity
were also analyzed. It was observed that in DROS, Sph and
Cer inhibited MAG whereas in BLROS, they both stimulated
MAG formation [124].

Similary to what occurred with LPPs, in depleted DROS,
DAGL activity was inhibited with respect to entire DROS,
reaching similar values to those in LROS [113, 124]. In
depleted DROS, MAG generation was inhibited in the
presence of S1P and C1P. In depleted BLROS, on the other
hand, MAG production was found in a higher percentage in
the presence of C1P, showing no significant differences in the
presence of S1P. In depleted DROS and BLROS, Sph and Cer
were found to stimulate MAG formation.

DAG has unique functions as a basic component of
membranes, as an intermediary in lipid metabolism and as a
key element in lipid-mediated signaling. In addition to PKC
family, an increasing number of proteins are known to be
modulated by DAG [126, 127]. It was observed that in excised
patches from frog rod outer segments, dioctanoylglycerol
(DiC8) modulates the gating of the cGMP-gated channel
in the absence of a phosphorylation reaction [128]. There
are three possible pathways of MAG formation using PA
as substrate: (i) by the action of LPP/DAGL, (ii) by the
action of PLA/LPP, and (iii) by the action of PLA/LPA
lysophosphatase. Our studies demonstrated that LPP/DAGL
is the pathway operative in ROS [113, 124]. The func-
tional significance of light modulation in DAGL activity in
vertebrate photoreceptors has not been fully elucidated to
date. However, evidence of the role of DAGL in Drosophila
phototransduction has been reported [129, 130]. Under all
conditions assayed, DAGL substrate (DAG) was found to
be diminished in the presence of S1P [113] whereas MAG
production was observed to be inhibited in entire and
depleted DROS while it underwent no changes in entire
and depleted BLROS [113]. Summing up, DAGL activity
was found to be inhibited in the presence of S1P in entire
DROS and stimulated in depleted DROS entire and depleted
BLROS. The fact that S1P diminishes DAGL activity in DROS
and that it produces a stimulatory effect on DAGL in ROS
membranes where protein redistribution occurs (BLROS), or
where soluble or peripheral proteins are detached (depleted
DROS), seems to indicate that S1P produces its effect either
by modulating or interacting with a protein involved in the
phototransduction cascade that modulates DAGL activity.

Interestingly, no LROS/BLROS differences were observed
in DAGL activity in the presence of C1P or S1P [124]. These
findings were not observed in LPP [113], thus suggesting
that they are related to DAGL itself and that the high
inhibition observed in DAGL activity caused by bleaching

is partially compensated by S1P or C1P. Furthermore, Sph
or Cer generated from S1P and C1P by LPP may modify
DAGL activity, as corroborated by our observations of the
effect of Sph and Cer on MAG generation in entire DROS.
The fact that S1P and/or C1P in depleted DROS and in entire
and depleted BLROS have the opposite effect to Sph and Cer
suggests that these lipids act independently on the enzymatic
activity. DAGL from DROS was observed to decrease in the
presence of Cer, reaching similar values to those of BLROS.
Further observations indicate that Cer seems to induce either
protein migration or detachment of DAGL enzyme from
the ROS membrane to the cytosolic fraction. The cellular
ratio between S1P/Sph and C1P/Cer is a critical factor in cell
survival/cell death decisions. It has been reported that DAG,
Cer [121] and Sph are involved in apoptosis induction [111]
whereas S1P has an antiapoptotic role [123]. The concen-
tration of DAG in small membrane areas, its characteristic
negative curvature, and its lack of charge induce unstable,
asymmetric regions in membrane bilayers. Intermediaries
with increased curvature minimize this tension and are
essential for membrane fusion and fission processes [131].
Consequently, DAG may affect physiological processes by
altering the membrane structures and fluidity and may favor
the shedding of membranous disks.

In the light of these findings on LPP and DAGL, it
can be concluded that the pathway involving LPP/DAGL
has an important role in controling PA/DAG/MAG levels.
Taken together, the above-mentioned results also suggest that
the metabolism of PA/DAG/MAG following light-mediated
ROS stimulation plays an active role in the organization of
signaling responses following the initial light stimulus and
that Cer and its derivates have an important role in the
light effects observed. We, therefore, suggest that the proteins
related to phototransduction phenomena are involved in
the effects observed in the presence of either S1P/Sph or
C1P/Cer. The main findings about the role of Cer and
sphingolipids derived from it in ROS under dark and light
conditions are summarized in Figure 2.

4. Role of Sphingolipids on
PA Metabolism in Cerebral Cortex
Synaptosomes: Effect of Aging

4.1. Sphingolipids, Aging and Neurodegenerative Diseases.
Alterations in glycerophospholipids, sphingolipids, and
cholesterol have been reported to occur in aging, neurode-
generative process and various neurological disorders [132–
135]. Higher levels of cholesterol and of lipid mediators
derived from glycerophospholipids and sphingolipids were,
in fact, found to be significantly increased in these disorders
[136, 137].

Lipid mediators from sphingolipid metabolism, namely
Cer, C1P, Sph, and S1P, modulate cPLA2, sPLA2, and
cyclooxygenase-2 activities through the translocation of
these enzymes from the cytosol to nuclear and plasma
membranes [37, 38, 138, 139]. The accumulation of lipid
mediators derived from glycerophospholipids and sphin-
golipids, along with changes in the cellular redox status,
and the lack of energy generation are associated with neural
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Figure 2: Modulation of lipid enzymatic activities by sphingolipids in two experimental models of isolated rod outer segments from
vertebrate retinas under dark (DROS) and light (BLROS) conditions. Under dark condition Cer, Sph, and their phosphorylated products,
S1P and C1P, diminish LPPs and DAGL activities. Under light condition, both Sph and Cer stimulate DAGL activity. These effects depend
on the presence of soluble and peripherial proteins, as was observed in depleted DROS and BLROS where LPPs’ inhibition produced by
sphingolipids is higher than in entire ROS. Interestingly, in depleted DROS, the absence of these proteins produces an increase in DAGL
activity. These results indicate that protein translocation (transducin and arrestin) between inner and outer segment or protein activation,
caused by light exposure, could modulate enzymatic activities involved in PA metabolism. The relative size of arrows indicates the different
degree of PA metabolism in DROS and BLROS.

cell injury and cell death and neurodegenerative diseases
[2, 138, 140, 141]. Sphingolipids, including Cer and Sph,
accumulate in several tissues such as brain during aging
[142, 143].

Several lines of evidence support the postulation that
age-related neurodegenerative diseases such as Alzheimer’s
disease (AD) are related to sphingolipid metabolism [144–
146]. Previous research indicates, in fact, that Cer signifi-
cantly accumulates in the brain of AD patients [147]. Thus,
Cer/Sph accumulation occurs with development and aging,
and it plays important roles in regulating cell proliferation,
differentiation, and apoptosis.

Although Cer generation in cells is usually associated
with the promotion of apoptosis, in some cell types

including sympathetic neurons, Cer promotes cell survival
[148]. Gomez-Munoz’s reports indicate that C1P and Cer
are antagonistic signals and that C1P blocks cell death
by inhibiting Cer production [57, 149]. Cer is a potent
inhibitor of protein kinase B (PKB), which is downstream
of phosphatidylinositol 3-kinase, and this is part of the
proapoptotic effect of Cer [149]. Therefore, depletion of Cer
seems to facilitate PKB activation. A decrease in SM and an
accumulation of Cer have both been found to be involved
in AD [147]. A high Sph level was also found in AD brains
although S1P levels were low. Both the low levels of S1P and
the high levels of Cer in AD brains seem to contribute to the
disease pathogenesis. In vitro amiloyd β (Aβ) has been shown
to induce apoptosis via SM/Cer pathway in brain [150, 151].
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Cer levels were also found to increase in response to aging
and various age-related stress factors (e.g., oxidative stress)
and were directly involved in apoptotic signaling in various
cell types, including neurons [147, 152–154]. It has thus
been suggested that Cer and Aβ synergize to induce neuronal
death in AD. Using in vitro and in vivo models of AD, it has
been shown that Aβ in neurons [146, 147] and oligoden-
drocytes [155] increase Cer levels [156, 157]. Further studies
have demonstrated that Cer levels increase Aβ synthesis [144,
158] and favor gamma secretase processing of APP [157, 159,
160] so that inhibition of Cer synthesis confers protection
against Aβ [147]. Satoi et al. (2005) found that Cer levels were
also increased in the cerebrospinal fluid of AD patients [161].
He et al. (2010) recently reported the first evidence of acid
sphingomyelinase activation, Sph increase, and S1P decrease
[162]. Aging results in the accumulation of various stress
factors, including proinflammatory and oxidative stress
molecules that can stimulate sphingomyelinase activities,
leading to the production of the proapoptotic lipid, Cer [147,
163]. Thus, under normal circumstances, Aβ and Cer levels
may be balanced to maintain neuronal cell homeostasis, but
upon aging, various stress factors become elevated to the
extent that they may activate sphingomyelinases and produce
Cer. Accumulating evidence also supports a role of Sph in
apoptosis [164–166].

In contrast to Cer and Sph, S1P can enhance cell
proliferation and antagonize apoptosis [167]. The regulation
of sphingomyelinases and ceramidases, as well as Sph kinase,
S1P phosphatase and LPPs may play pivotal roles in the
apoptotic signaling of cells by regulating the ratio between
SM, Cer, Sph, C1P, and S1P. Stress signals lead to increased
levels of Cer [153, 168]; however, the association of Cer with
downstream signaling events is still poorly understood. Cer
regulates directly or indirectly the activities of different cell
signaling mediators including Cer-activated protein kinases
and Cer-activated protein phosphatase, mitogen-activated
protein kinase, protein kinase ζ , phospholipases such as
cPLA, PLD, and PLA2, stress-activated protein kinases, cyclo-
oxygenase, transcription factors such as the nuclear factor κB,
and caspases [168–174].

The major Cer species in the brain are C18:0-, C18:1-,
and C24:1-Cer. All Cer species were found to be elevated in
ischemic brain and Cer intracellular site accumulation was
observed to occur in purified mitochondria as well as in
the endoplasmic reticulum [175]. Futhermore, it has been
reported that ethanol induces Cer formation in astrocytes
and that PA, the product of PLD activity, antagonizes
ethanol-induced formation of Cer. These results evidence
a crosstalk between PA and Cer, two lipid messengers
with opposite effects on cellular proliferation. It is also
known that PA mediates mitogenic stimulation in astrocytes
whereas the formation of Cer by sphingomyelinase activation
accompanies apoptosis. Summing up, these findings are
indicative of a crosstalk between lipid-signaling pathways
in astrocytes such that the product of PLD, namely PA,
inhibits Cer formation whereas Cer inhibits PLD activation.
PA:Cer ratio contributes to the decision whether astrocytes
proliferate or undergo apoptosis [176].

4.2. Sphingolipids, PA Metabolism and Aging. Aging is
accompanied by the impaired functioning of many sys-
tems, thus producing a gradual decline in the capacity
of various cell types including neurons [177]. Lipids have
broad information carrying functions in the central nervous
system. They form an integral part of membranes and
provide messenger molecules that mediate communication
among cells. Any modification in their metabolism and/or
in the enzymatic activities that metabolize them may, there-
fore, affect cell function in physiological aging. Age-related
changes in lipid content and in the enzymatic activities
involved in lipid metabolism in different brain regions have
been documented [142, 178–185]. PA, DAG, and 2-AG are
involved in signal transduction [136, 186, 187]. In eukariotic
cells, these molecules have been associated with neurological
disorders such as AD [188].

Previous research from our laboratory demonstrated that
LPP hydrolyzes PA in synaptosomal cerebral cortex and
that the generated DAG is metabolized to MAG by DAGL
[181]. LPP regulates cell signaling under physiological or
pathological conditions. This cell signaling occurs via the
attenuation of lipid phosphate signaling and the production
of bioactive DAG, 2-AG, Sph, and Cer [81]. The precise
control of PA, DAG, and 2-AG and the enzymes that
metabolize them, LPP, DAGL, and MAGL are necessary for
the correct functioning of these molecules in the signaling
mechanism.

The present paper also analyzes the formation of lipid
mediators generated from PA in synaptosomes prepared
from the cerebral cortex of adult and aged rats. In all
instances, PA metabolism was analyzed in the presence of the
sphingolipids. Our results demonstrate that aging modulates
PA metabolism and indicate a different utilization of PA in
the presence of S1P and C1P [125]. On the other hand, PA
metabolism was found to generate DAG, MAG, and glycerol
by the sequential action of LPP, DAGL, and MAGL in the
CC Syn (Figure 3). It was also demonstrated that PA is
metabolized by PLA/LPAPase in synaptic endings. In adult
CC Syn, DAG formation was found to be stimulated at low
concentrations of C1P and MAG and glycerol generation was
lower in aged than in adult CC Syn. Equimolar concentra-
tions (100 μM) of C1P and PA were observed to generate a
DAG level similar to that observed with PA alone and a higher
production of MAG and glycerol in aged CC syn with respect
to adult ones. DAG production was found to be inhibited as
a function of S1P concentration in aged CC synaptosomes,
and no changes in DAG production by S1P were observed
in adult CC syn. It was also observed that MAG formation in
adult and aged CC syn underwent no changes in the presence
of S1P; however, glycerol production was higher in adult
than in aged membranes in the presence of increased S1P
concentrations. We also evaluated the effect of Sph and Cer
on these products in CC Syn from adult and aged rats. Sph
and Cer produce no changes in DAG production in adult
membranes. However, in aged membranes, DAG production
is stimulated by both Sph and Cer. Sph was found to produce
no changes in MAG production in adult Syn but stimulated
it in aged CC Syn. Cer, in contrast, was found to inhibit
MAG generation in adult membranes and stimulated its
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Figure 3: Modulation of PA metabolic pathways by sphingolipids in synaptosomes (Syn) from adult (a) and aged (b) rat cerebral cortex.
In adult Syn (a), Cer modulates DAGL and MAGL activities negatively while their phosphorylated form, C1P, stimulates MAG and Gly
production via LPAPase/MAGL pathway. In aged Syn (b), results indicate that there is a major modulation by sphingolipids. Cer and Sph
stimulate PA metabolization via LPPs/DAGL/MAGL pathway. C1P increases LPAPase, DAGL, and MAGL activities. In contrast, S1P inhibits
DAG generation but produces an increase in Gly formation. (1) LPPs, lipid phosphate phosphatase; (2) DAGL, diacylglycerolipase; (3)
MAGL, monoacylglycerolipase; (4) PLA, phospholipase A; (5) LPAPase, lysophospholipase phosphatase or LPPs. The relative size of arrows
indicates the predominance of PA metabolism pathway.

formation in aged membranes. Furthermore, in the presence
of Cer, glycerol formation was found to be inhibited in adult
membranes but stimulated in aged membranes [125].

The transformation of DAG into MAG plus glycerol
in Syn preincubated with RHC-80267, a specific DAGL
inhibitor, allowed us to better visualize the differences in
DAG metabolism between adult and aged CC synaptosomes.
A major transformation of DAG into MAG and glycerol
was observed in adult Syn. In the presence of C1P, DAG
transformation into MAG and glycerol was observed to be
markedly lower in aged membranes with respect to adult
membranes. No further significant differences were observed
in DAG metabolism between adult and aged membranes in
the presence of S1P. DAG metabolism in the presence of Cer
and Sph was also evaluated. In the presence of Cer and Sph,
DAG was found to be transformed into MAG and glycerol
mainly in adult membranes [125].

PA [112], DAG [189], 2-AG [190], Sph, Cer, and their
phosphorylated products [30, 191] have been defined as key
inter- and intracellular lipid signaling molecules. All of them
and their related enzymes participate in the regulation of
many functions of the CNS [192, 193]. PA metabolism in
CC syn involves two possible pathways: (i) the sequential
action of LPPs, DAGL, and MAGL [183, 184] generating
DAG, MAG, and glycerol, respectively, and (ii) the action
of PLA, LPA phosphohydrolase, and MAGL generating LPA,
MAG, and glycerol, respectively (Figure 3). The fact that the
product of an enzymatic reaction could be used as a substrate

for the subsequent enzyme indicates that these enzymes
behave as an enzymatic complex. A sequential action of LPP
and DAG lipase producing DAG and MAG, respectively, was
observed in rat CC Syn [184]. It has been reported that
endogenously produced DAG as a result of LPP action is
further hydrolyzed to MAG and glycerol [100, 194]. C1P, S1P,
Cer, and Sph are found in Syn at negligible concentrations.
In general, tracer lipids such as S1P are present at low
nanomolar concentrations in cells but at high nanomolar
concentrations in serum [195]. Cer often constitutes 0.1%–
1% of total membrane lipids and Sph is often detected at
concentrations that are lower than an order of magnitude
than those of Cer [196]. The degree of competitiveness
observed between PA/S1P suggests that LPP1 is the most
active isoform in adult Syn, while LPP1 and LPP3 isoforms
are most active in aged Syn. As a result, LPP1 in adult
synaptosomes and LPP1/LPP3 in aged Syn could either
restrict the effects of S1P to their respective receptors and/or
participate in their uptake, thus exerting their influence
on synaptosomal functions [125, 177]. DAG generation is
quantitatively different from that observed in MAG and
glycerol formation in the presence of C1P and S1P, thus sug-
gesting that these effects on MAG and glycerol are related to
DAGL/MAGL or PLA/LPA phospholipase/MAGL themselves
and that they are not a consequence of different degrees of
DAG availability. Under our assay conditions, it could be
observed that MAG and glycerol from PA involve two pos-
sible routes: (i) the sequential action of LPP/DAGL/MAGL
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and (ii) PLA/LPA phosphohydrolase/MAGL [183]. The use
of RHC-80267, a specific DAGL inhibitor [197], enabled
us to determine the different pathways involved in MAG
and glycerol production. In adult CC synaptosomes, the two
pathways contribute equally to MAG generation whereas in
aged CC synaptosomes the second pathway is predominant
(Figure 3). Though MAG availability is similar in adult
and aged Syn, its metabolism to glycerol is lower in aged
membranes. This seems to indicate that aging diminishes
the catalytic efficiency of MAGL for its substrate. When the
DAGL pathway is inhibited, glycerol production decreases
only in aged Syn, thus corroborating the above-mentioned
hypothesis. It was also observed that under lower availability
of the substrate, MAGL becomes more sensitive to the
presence of C1P and S1P, reducing the activity in adult
Syn and increasing it in aged Syn. The analysis of the
metabolism of DAG to MAG plus glycerol by DAGL/MAGL
indicated that aging reduces this metabolism whereas in the
presence of C1P or S1P, metabolism undergoes no changes.
Based on our results, it can be hypothesized that C1P and
S1P modulate MAG and glycerol formation by the pathway
involving PLA/LPAPase/MAGL. In view of the above, and in
order to assess whether or not the effect of S1P and C1P on
DAG, MAG, and glycerol production is due to the Sph and
Cer generated by LPP on S1P or C1P, we evaluated the effect
of the two lipids on these products. Our results demonstrate
that S1P and Sph have different effects on glycerol generation
from adult Syn and on DAG and MAG generated from aged
membranes. In addition, C1P and Cer exert different effects
on DAG/MAG/glycerol in adult membranes. The different
effects of S1P and C1P on PA metabolism with respect to
those of Sph and Cer suggest that these lipids modulate
the enzymatic activities that metabolize PA by independent
mechanisms. S1P exerts its effects mainly through related
membrane receptors [198, 199] whereas PA, DAG, C1P, and
Cer do so by the recruitment of cytosolic proteins [200].

Summing up, this paper section analyzes the aging
effect on PA metabolism by means of the sequential
action of LPPs/DAGL/MAGL and the pathway involving
PLA/LPAPase. The analysis of DAG production using PA and
S1P or C1P at equimolar concentrations shows the com-
petitive effect between PA and these alternative substrates.
However, the effects of the alternative substrates at con-
centrations other than equimolar with PA on MAG and
glycerol production may be due not only to different DAG
availability but also to the effect of the alternative substrate
itself on the enzymes that subsequently metabolize DAG
or generate MAG and glycerol. Figure 3 summarizes the
principal findings observed in adult and agedSyn.

Recent advances in neuroscience have demonstrated that
lipids have extensive information-carrying functions in the
central nervous system both as ligands and as substrates for
proteins [201]. PA and PA-lipid derivatives mediate a diverse
range of biological processes in the CNS. On the other hand,
PA and DAG alter membrane properties, control traffic,
and serve as messenger molecules mediating communication
among cells [202]. MAG functions as an endogenous CB-
1 receptor agonist [190]. An imbalance of PA, DAG, or
2-AG may induce alterations both in neurotransmission

and in the neuronal dysfunction observed in senescense
and in neurological disorders such as Parkinson and AD,
demonstrating the crucial role of lipids in tissue pathophysi-
ology and cell signaling [203, 204]. Signaling lipid-generating
enzymes from PA may thus provide pharmacologically
potential targets for the treatment of aging and neurological
dysfunctions.

Sphingolipid signaling may also represent a novel neu-
roprotective target to counteract the pathophysiology of
acute brain and spinal cord injury at the level of apoptotic
cell death mechanisms, mitochondrial dysfunction, lipid
hydrolysis, and oxidative damage mechanisms. Furthermore,
S1P acting as an agonist seems to increase CNS resistance to
injury by promoting neurotrophic activity and antagonists of
certain S1P-related activity are likely to have proregenerative
effects via the promotion of neurite growth [205]. Recent
findings suggest possible roles of S1P in regulating apoptotic
cell death, oxidative stress and damage mechanisms, mito-
chondrial dysfunction, and modulation of trophic factor
responses, including neurite outgrowth and neuro- and
angiogenesis [206, 207]. Another reason why S1P is involved
in acute CNS injury is the fact that sphingolipid signaling is
known to play a role in membrane lipid hydrolysis, which
has long been known to be one of the earliest events in
the posttraumatic secondary injury cascade. Membrane lipid
molecules seem to play an important regulatory role as
signaling molecules and second messengers, which under
pathological conditions can undergo oxidative damage in the
form of lipid peroxidation [208]. A third potential linkage
between sphingolipid signaling and CNS injury is derived
from the known importance of reactive oxygen species (ROS)
and oxidative damage mechanisms in the pathophysiology
of CNS injuries [208–210]. Recently, a crosstalk has been
proposed between metabolites of glycerophospholipid and
sphingolipid metabolism, which is an important step in the
initiation and maintenance of oxidative stress associated with
neurologic disorders [140, 208]. Oxidative stress has been
found to be involved in the pathogenesis of traumatic brain
and spinal cord injuries.

Further research in this novel area will, therefore, lead
to a better understanding of the mechanisms controling
glycerophospholipid and sphingolipid metabolism in the
CNS and will provide potential targets for diagnostic or ther-
apeutic strategies for the treatment of aging and neurological
diseases.

5. Summary and Concluding Remarks

There is a close relationship between glycerophospholipid
and sphingolipid metabolism. Alterations in both of them
have been reported to occur in invertebrate phototrans-
duction, aging, neurodegenerative processes, and various
neurological disorders. In this paper, we have summarized
the principal findings that relate PA metabolism with Cer,
Sph, C1P, and S1P in vertebrate phototransduction and in
aging phenomena. PA is metabolized by LPPs which also
dephosphorylate S1P and C1P. The product of LPPs action
on PA, DAG, is additionally metabolized to MAG in ROS and
to MAG and glycerol in CC Syn. DAGL and MAGL enzymes
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participate in these degradative mechanisms, and they,
therefore, seem to work similarly to an enzymatic complex.
In ROS, the principal competitive effect on PA hydrolysis is
exerted by S1P in darkness and by C1P, when retinas are
bleached and both sphingolipids reduce DAGL activity under
dark condition. Furthermore, S1P and C1P decrease MAG
production under dark conditions whereas only C1P dimin-
ishes its formation in bleached ROS. Sph and Cer inhibit
DAG and MAG formation in entire ROS independently of
the their illumination state. The extraction of peripheral
and soluble proteins from ROS promotes the metabolism
of DAG to MAG under stimulation by light. We, therefore,
suggest that proteins related to phototransduction phenom-
ena are involved in the effects observed in PA/DAG/MAG
metabolism in the presence of either S1P/Sph or C1P/Cer.
However, it cannot be disregarded that high levels of lipid
mediators could modulate calcium homeostasis and that this
may be, in part, responsible for the effects observed on LPPs
and DAGL activities under light conditions.

On the other hand, changes in PA metabolism in CC Syn
have been observed in our model of aging in the presence
of Cer, Sph, S1P, and C1P. Opposite effects have also been
observed between S1P and C1P on PA metabolism in aging,
while S1P decreases DAG formation, C1P increases it and
favors its metabolism to MAG. The dephosphorylated prod-
ucts of C1P and S1P, Cer, and Sph increase PA metabolism
by the pathway involving LPP/DAGL/MAGL action in aged
membranes. Available evidence emphasizes the key role
of sphingolipid molecules and their relative balance in
regulating the final fate of photoreceptors and degenerative
process in the CNS. The involvement of these molecules
in the modulation of enzymes that generate second lipid
messengers from glycerophospholipids open an important
research pathway. Therefore, further studies in this direction
will lead to a better understanding of the mechanisms
controling PA metabolism in photoreceptors and in the
CNS and will provide potential targets for diagnostic or
therapeutic strategies controling photoreceptor cell fate and
the treatment of aging and neurological diseases.
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[27] A. Gómez-Muñoz, J. Y. Kong, K. Parhar et al., “Ceramide-
1-phosphate promotes cell survival through activation of
the phosphatidylinositol 3-kinase/protein kinase B pathway,”
FEBS Letters, vol. 579, no. 17, pp. 3744–3750, 2005.
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ley, “Plasma membrane fractions from rat liver contain a
phosphatidate phosphohydrolase distinct from that in the
endoplasmic reticulum and cytosol,” Journal of Biological
Chemistry, vol. 266, no. 5, pp. 2988–2996, 1991.

[77] W.-I. Wu, Y.-P. Lin, E. Wang, A. H. Merrill Jr., and G. M.
Carman, “Regulation of phosphatidate phosphatase activity
from the yeast Saccharomyces cerevisiae by sphingoid bases,”
Journal of Biological Chemistry, vol. 268, no. 19, pp. 13830–
13837, 1993.

[78] Y. Lavie and M. Liscovitch, “Activation of phospholipase D by
sphingoid bases in NG108-15 neural-derived cells,” Journal of
Biological Chemistry, vol. 265, no. 7, pp. 3868–3872, 1990.

[79] F. Sakane, K. Yamada, and H. Kanoh, “Different effects
of sphingosine, R59022 and anionic amphiphiles on two
diacylglycerol kinase isozymes purified from porcine thymus
cytosol,” FEBS Letters, vol. 255, no. 2, pp. 409–413, 1989.

[80] A. Martin, P. A. Duffy, C. Liossis et al., “Increased concen-
trations of phosphatidate, diacylglycerol and ceramide in ras-
and tyrosine kinase (fps)-transformed fibroblasts,” Oncogene,
vol. 14, no. 13, pp. 1571–1580, 1997.

[81] D. N. Brindley, “Lipid phosphate phosphatases and related
proteins: signaling functions in development, cell division,
and cancer,” Journal of Cellular Biochemistry, vol. 92, no. 5,
pp. 900–912, 2004.

[82] D. N. Brindley, D. English, C. Pilquil, K. Buri, and Z.-C. Ling,
“Lipid phosphate phosphatases regulate signal transduction
through glycerolipids and sphingolipids,” Biochimica et Bio-
physica Acta, vol. 1582, no. 1–3, pp. 33–44, 2002.

[83] J. Long, P. Darroch, K. F. Wan et al., “Regulation of cell
survival by lipid phosphate phosphatases involves the mod-
ulation of intracellular phosphatidic acid and sphingosine 1-
phosphate pools,” Biochemical Journal, vol. 391, no. 1, pp. 25–
32, 2005.

[84] V. A. Sciorra and A. J. Morris, “Roles for lipid phosphate
phosphatases in regulation of cellular signaling,” Biochimica
et Biophysica Acta, vol. 1582, no. 1–3, pp. 45–51, 2002.

[85] R. Jasinska, Q.-X. Zhang, C. Pilquil et al., “Lipid phosphate
phosphohydrolase-1 degrades exogenous glycerolipid and
sphingolipid phosphate esters,” Biochemical Journal, vol. 340,
no. 3, pp. 677–686, 1999.

[86] C. Pilquil, I. Singh, Q.-X. Zhang et al., “Lipid phosphate
phosphatase-1 dephosphorylates exogenous lysophosphati-
date and thereby attenuates its effects on cell signalling,”
Prostaglandins & Other Lipid Mediators, vol. 64, no. 1–4, pp.
83–92, 2001.

[87] Y. Zhao, P. V. Usatyuk, R. Cummings et al., “Lipid phosphate
phosphatase-1 regulates lysophosphatidic acid-induced cal-
cium release, NF-κB activation and interleukin-8 secretion
in human bronchial epithelial cells,” Biochemical Journal, vol.
385, no. 2, pp. 493–502, 2005.

[88] Y. J. Sigal, M. I. McDermott, and A. J. Morris, “Integral
membrane lipid phosphatases/phosphotransferases: com-
mon structure and diverse functions,” Biochemical Journal,
vol. 387, no. 2, pp. 281–293, 2005.

[89] Y. Zhao, S. K. Kalari, P. V. Usatyuk et al., “Intracellular
generation of sphingosine 1-phosphate in human lung

endothelial cells: role of lipid phosphate phosphatase-1 and
sphingosine kinase,” Journal of Biological Chemistry, vol. 282,
no. 19, pp. 14165–14177, 2007.

[90] D. N. Brindley and D. W. Waggoner, “Mammalian lipid phos-
phate phosphohydrolases,” Journal of Biological Chemistry,
vol. 273, no. 38, pp. 24281–24284, 1998.

[91] D. Escalante-Alcalde, L. Hernandez, H. Le Stunff et al.,
“The lipid phosphatase LPP3 regulates extra-embryonic
vasculogenesis and axis patterning,” Development, vol. 130,
no. 19, pp. 4623–4637, 2003.

[92] S. Pyne, K.-C. Kong, and P. I. Darroch, “Lysophosphatidic
acid and sphingosine 1-phosphate biology: the role of lipid
phosphate phosphatases,” Seminars in Cell and Developmen-
tal Biology, vol. 15, no. 5, pp. 491–501, 2004.

[93] A. D. Renault, Y. J. Sigal, A. J. Morris, and R. Lehmann,
“Soma-germ line competition for lipid phosphate uptake
regulates germ cell migration and survival,” Science, vol. 305,
no. 5692, pp. 1963–1966, 2004.

[94] N. M. Giusto, S. J. Pasquaré, G. A. Salvador, P. I. Castag-
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