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Abstract

Lipid droplets (LDs) are important cellular organelles that govern the storage and turnover of lipids. Little is known about
how the size of LDs is controlled, although LDs of diverse sizes have been observed in different tissues and under
different (patho)physiological conditions. Recent studies have indicated that the size of LDs may influence adipogenesis,
the rate of lipolysis and the oxidation of fatty acids. Here, a genome-wide screen identifies ten yeast mutants producing
‘‘supersized’’ LDs that are up to 50 times the volume of those in wild-type cells. The mutated genes include: FLD1, which
encodes a homologue of mammalian seipin; five genes (CDS1, INO2, INO4, CHO2, and OPI3) that are known to regulate
phospholipid metabolism; two genes (CKB1 and CKB2) encoding subunits of the casein kinase 2; and two genes (MRPS35
and RTC2) of unknown function. Biochemical and genetic analyses reveal that a common feature of these mutants is an
increase in the level of cellular phosphatidic acid (PA). Results from in vivo and in vitro analyses indicate that PA may
facilitate the coalescence of contacting LDs, resulting in the formation of ‘‘supersized’’ LDs. In summary, our results
provide important insights into how the size of LDs is determined and identify novel gene products that regulate
phospholipid metabolism.
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Introduction

Lipid droplets (LDs) are dynamic organelles that govern the

storage and turnover of lipids [1]. They also play important roles

in membrane and lipid trafficking, protein storage, protein

degradation and the replication of hepatitis C and dengue viruses

[1,2,3,4,5]. All LDs comprise a core of storage neutral lipids, i.e.

triacylglycerols (TAG) and sterol esters (SE), which are wrapped by

a monolayer of phospholipids containing embedded proteins. LDs

are believed to originate from the endoplasmic reticulum (ER),

although the exact mechanism underlying their biogenesis remains

to be determined [6].

LDs of various sizes have been observed in different tissues or

within the same cell type under different (patho)physiological

conditions [7,8]. A giant (up to 200 mm in diameter), unilocular

LD often occupies the entire cytoplasm of white adipocytes,

specializing in energy storage. In contrast, many much smaller

LDs (usually less than 10 mm in diameter) are found in brown

adipocytes. Small LDs are also found in normal liver cells;

however, the size of liver LDs increases dramatically in hepatic

steatosis, e.g. in the ob/ob mice [9]. The physiological significance

of LD size has not been well recognized and little is known about

the molecular mechanisms that influence LD size. Recent studies

have begun to shed light on the control and physiological

relevance of LD size. Deletion of FSP27 (fat-specific protein of

27 kDa) resulted in many smaller LDs in white adipocytes,

enhanced lipolysis and protection from diet-induced obesity and

insulin resistance [8,10]. A genome-wide RNA interference

(RNAi) screen in Drosophila S2 cells identified enzymes of

phospholipid biosynthesis as determinants of LD size and number

[11]. Interestingly, screens of the viable yeast deletion library

found extensive clustering of LDs and formation of ‘‘Supersized’’

LDs (SLDs) that are up to 50 times the normal volume in cells

deleted for FLD1 [12], which encodes a functional homologue of a

human lipodystrophic protein: seipin [13,14].

Congenital generalized lipodystrophy (CGL) is characterized by a

nearly complete absence of adipose tissue and a range of meta-

bolic changes such as extreme insulin resistance [15]. Genome-wide
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linkage analysis identified two loci for CGL: CGL type 1 (CGL1) is

caused by mutations in the 1-acylglycerol-3-phosphate-O-acyl

transferase 2 (AGPAT2) gene [16] and CGL2 by mutations in

BSCL2 which encodes seipin [17]. AGPAT2 catalyzes the for-

mation of phosphatidic acid (PA) but knocking down AGPAT2 led

to elevated levels of several phospholipid species including PA

[18,19]. In mice, mutations in the lipin-1 gene which encodes a

phosphatidate phosphatase are responsible for severe lipodystrophy

[20,21]. Therefore, both AGPAT2 and lipin-1 appear to control

adipogenesis through modulation of the synthesis of phospholipids

and triacylglycerol precursors, especially PA. In contrast, although

Fld1p (yeast seipin) has been implicated in lipid metabolism, little

information is available on its molecular function [12,22].

Previous genome-wide studies of yeast LDs covered only non-

essential yeast genes and used only one culture condition [12,13].

Here, a revised screen of yeast deletion mutants for the formation

of ‘‘supersized’’ lipid droplets (SLDs) identifies known and novel

proteins in phospholipid metabolism. These mutants including

fld1D share one common feature: an increase in the level of PA.

Reducing the amount of PA invariably led to a significant

reduction in SLD formation in all mutants. Finally, a critical role

of PA in LD coalescence is confirmed when LD formation is

reconstituted in vitro.

Results

Identification of additional yeast mutants with
‘‘supersized’’ LDs

We previously identified yeast gene deletions that led to a

reduced number of cytoplasmic LDs, and we noticed that one of

these mutants, fld1D, developed very large LDs (Figure 1A and

[12]). Whereas the diameter of LDs in wild type (WT) cells

typically ranges between 0.3 to 0.4 mm, and rarely exceeds 0.5 mm

[23], fld1D cells often synthesize LDs with a diameter larger than

1.0 mm [12]. We arbitrarily define LDs with a diameter greater

than 1.0 mm as ‘‘supersized’’ LDs (SLDs), whose volume is over 30

times the average of wild type LDs. About 20% of fld1D cells

cultured in rich (YPD) medium contained SLDs, and the

percentage increased to ,70% when cells were grown in minimal

(synthetic complete/SC) medium (Figure 1A and Table 1).

Given the effects various nutrients may have on the dynamics of

LDs, we reasoned that growing cells on defined, minimal media

(SC) would reduce the impact of nutrients and uncover additional

genes. We have therefore screened the entire collection of viable

yeast deletion mutants (,4800) grown on minimal (SC) media for

SLDs. In addition, our previous screen focused only on the viable

yeast deletion mutants, representing ,80% of the genome. In

order to identify essential genes impacting LD size, we now

included the collection of mutants where all essential genes are

controlled by the TetO7-promoter, which can be switched off

efficiently [24]. Besides fld1D, we identified nine additional

mutants (sld2-10) that produced supersized LDs (SLDs) (Figure 1

and Table 1). Except for two previously uncharacterized genes

(RTC2/SLD6&MRPS35/SLD7), the majority of the SLD genes

appear to function directly or indirectly in the metabolism of

phospholipids, especially phosphatidylcholine (PC). PC is synthe-

sized in yeast via two pathways: the Kennedy pathway and the

phosphatidylethanolamine N-methyltransferase (PEMT) pathway

(see Figure S1). In the PEMT pathway, phosphatidylethanolamine

(PE) is methylated to PC in three steps by two methyltransferases,

Cho2p and Opi3p. Besides cho2D and opi3D mutants, ino2D and

ino4D mutants are also defective in PC synthesis via PE methy-

lation since Ino2p and Ino4p are transcription factors that

positively regulate the PEMT pathway [25]. When cki1D, pct1D,

cpt1D, cho2D, opi3D, ino2D, and ino4D cells were cultured in rich

(YPD) medium, none of these mutants accumulated SLDs. In

contrast, when grown in SC medium (no choline and hence little

Kennedy pathway activity), approximately 60% of cho2D cells,

90% of opi3D cells, 97% of ino2D and ino4D cells produced SLDs,

whereas cki1D, pct1D, and cpt1D cells did not (Figure 1B and 1E).

From these results, PC synthesis does appear to be critical in

regulating the size of LDs, in agreement with a recent study

examining LD dynamics in Drosophila S2 cells [11]. Interestingly, of

the 825 essential genes examined, SLDs were observed only upon

knocking-down CDS1 (encoding CDP-diacylglycerol synthase)

(Figure. 1D and 1E). Therefore, the synthesis of not only PC,

but also other phospholipids could be important for LD growth.

The SLDs observed in fld1D, cho2D, opi3D, ino2D, ino4D, and

TetO7-CDS1 (thereafter referred to as cds1 when repressed by

doxycycline) strains were further confirmed by electron microsco-

py (Figure 1E). The levels of TAG and SE of all mutants were also

examined, and the level of TAG was significantly increased in all

mutants (Figure 1F).

Defective TAG mobilization of ‘‘supersized’’ LDs
As compared to many small LDs in WT cells, the formation

of SLDs limits the surface area that is accessible to lipases. Therefore,

the mobilization of TAG may be impaired in sld mutants. TAG

breakdown in fld1D, ino4D, and cds1 strains was monitored in the

presence of 10 mg/L cerulenin that prevents their de novo synthesis as

described [26]. Our results show that TAG mobilization in the

mutants is significantly slower than that of WT (Figure S2).

Treatment of different phospholipid precursors exerted
distinct effects on the formation of SLDs

Our finding that YPD media invariably decreased the per-

centage of cells displaying SLDs in all sld mutants suggested that

certain components present in rich YPD media, but absent or

low in SC media, suppressed SLD formation. Considering that

Cds1p, Cho2p, Opi3p, Ino2p, and Ino4p are either enzymes or

transcription factors involved in phospholipid biosynthesis, we

speculated that these components might be precursors of phos-

pholipids. To examine this possibility, we cultured WT and

mutant strains in SC media supplemented with 1 mM choline,

1 mM ethanolamine, or 75 mM inositol. Interestingly, inositol

treatment reduced the SLD formation in all mutants (Figure 2).

In contrast, ethanolamine addition had an opposite effect; it

Author Summary

Lipid droplets (LD) are primary lipid storage structures that
also function in membrane and lipid trafficking, protein
turnover, and the reproduction of deadly viruses. Increased
LD accumulation in liver, skeletal muscle, and adipose
tissue is a hallmark of the metabolic syndrome. Enlarged
LDs are often found in these tissues under disease
conditions. However, little is known about how the size
of LDs is controlled in eukaryotic cells. In this study, we use
genetic and biochemical methods to identify important
gene products that regulate the size of the LDs. Notably, a
common feature among these mutants with ‘‘supersized’’
LDs is an increased level of phosphatidic acid (PA). We also
show that a small amount of PA can increase the size of
artificial LDs in vitro. Overall, our study identifies important
lipids and proteins in determining LD size. These results
provide valuable insights into how human cells/tissues
handle abnormal influx of lipids in today’s obesogenic
environment.

Seipin, Lipin, and Supersized Lipid Droplets
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enhanced SLD formation in most of the mutants. As expected,

choline addition completely blocked the formation of supersized

LDs in cho2D, opi3D, ino2D and ino4D strains (Figure 2A and 2B),

since exogenously added choline restored PC synthesis in these

mutants through the Kennedy pathway. Surprisingly it also had

similar effect in rtc2D and mrps35D strains, suggesting that these

two genes may also function in PC metabolism. Choline addition

also partially inhibited SLD formation in cds1, ckb1D, and ckb2D
cells, but had little effect in fld1D cells.

A link between the generation of ‘‘supersized’’ LDs and
an elevated level of intracellular phosphatidic acid (PA)

One notable common feature among cho2D, opi3D, ino2D, ino4D
and cds1 mutants is the accumulation of PA (Figure 3A and

Figure 1. Yeast fld1D and nine additional mutant strains produce ‘‘supersized’’ LDs (SLDs). Cells were grown in YPD or SC medium until
early stationary phase, stained with Nile red, and examined by fluorescence microscopy. Bar, 5 mm. A). LDs of WT and fld1D. B). LDs of mutant
strains defective in either CDP-choline pathway (cki1D, pct1D, and cpt1D) or PEMT pathway (cho2D, opi3D, ino2D, and ino4D) of PC synthesis. C).
Supersized LDs observed in rtc2D, mrps35D, ckb1D and ckb2D. D). LDs of a yeast strain with the CDS1 gene under the control of a tetracycline-
regulated promoter grown in the presence or absence of doxycycline. E). Transmission electron microscopic examination of LDs in WT, fld1D,
cho2D, opi3D, ino2D, ino4D, and cds1 strains cultured in SC medium. Bar, 1 mm. F). Relative cellular amounts of TAG and SE. #, p,0.05; *, p,0.01,
compared to WT.
doi:10.1371/journal.pgen.1002201.g001

Seipin, Lipin, and Supersized Lipid Droplets
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[25,27]). PA is a cone-shaped lipid that alters the curvature of the

membranes, and has been shown to promote both SNARE-

dependent and -independent membrane fusion events [28,29]. A

previous study implicated PA in the assembly of lipid droplets from

newly synthesized TAGs in a cell-free system [30]. To examine

whether PA is a key player in the formation of SLDs, we first

analyzed the cellular level of PA in the SLD mutants by LC-MS.

Indeed a significant elevation of PA was seen in all mutants except

fld1D cells, where the level of PA is only moderately elevated

(Figure 3A and 3B). Inositol treatment reduces the cellular PA pool

through increased synthesis of phosphatidylinositol (PI) and also

through the activation of a Mg2+-dependent PA phosphatase

[25,31]. Consistent with the implication of PA in SLD formation,

inositol treatment resulted in a significant reduction of SLD

formation in all mutants including fld1D (Figure 2). In addition,

when two PA phosphatases (PAH1 and DPP1) were overexpressed

under a GAL1 promoter [20,32], both greatly reduced SLD forma-

tion in ino2D and ino4D cells, and also in fld1D cells (Figure 3C).

Overexpression of PAH1 and DPP1 did not change the level of PC,

PE, PS and PI, but significantly reduced the cellular level of PA in

fld1D cells (Figure S3). These results imply that the increased

amount of PA may account for the formation of SLDs, and that

the level of PA in subcellular organelles such as the endoplasmic

reticulum where LDs originate may have changed in fld1D cells,

despite an insignificant increase in overall PA in this mutant (see

below).

Fld1p could regulate the metabolism of phospholipids
SLDs in yeast were originally identified in fld1D cells; but the

molecular function of Fld1p/seipin remains elusive [22]. To gain

more insights into the function of Fld1p, mRNA microarray

analysis was performed in WT and fld1D cells. Of ,5800 tran-

scripts examined, INO1 and OPI3 were the only transcripts whose

levels were significantly upregulated in fld1D cells (Figure 4A).

Quantitative real-time PCR confirmed a ,5-fold increase in the

INO1 mRNA level in fld1D cells (Figure 4B). INO1 gene expression

is derepressed when intracellular PA concentration rises [25]. We

therefore examined the level of PA on the ER where the Opi1p-

Scs2p regulatory complex of INO1 expression exists [33]. Indeed, a

significant increase of PA was observed in microsomes isolated

from fld1D cells (Figure 4C). These results show that Fld1p, as

other SLD mutants, can regulate PA metabolism, and also suggest

that both the level and location of PA are relevant to droplet

formation. A recent study in Drosophila also revealed a possible role

for dSeipin in PA metabolism [34].

Elevated PA enhances SLD formation in yeast
Another strategy to increase PA is through inactivation of

Pah1p, the PA phosphatase and ortholog of mammalian lipin

proteins [20,21]. Deletion of PAH1 leads to a dramatic increase in

the level of its substrate, PA, but causes a dramatic reduction in the

amount of TAG [20]. Although the number of LDs was signi-

ficantly reduced in pah1D cells, LD size was comparable to that in

WT cells. Remarkably, SLDs were detected consistently in ,3%

of pah1D cells, though its TAG synthesis was decreased by over

50% (Figure 5A–5C). In contrast, no SLDs were ever observed

in dga1D lro1D cells, which have little diacylglycerol (DAG)

acyltransferase activity [35,36]. Interestingly, when pah1D cells

were supplemented with oleate and DAG which bypasses the

lack of PA phosphatase activity, the number of cells producing

SLD increased to ,30%, whereas oleate alone had no effect

(Figure 5D). These results further indicate that PA plays an impor-

tant role in SLD formation, and this role is more pronounced

when the biosynthesis of TAG is not severely compromised.

Elevated phosphatidylethanolamine concentration is a
factor in the biogenesis of SLDs

The result that ethanolamine addition enhanced SLD forma-

tion in nearly all mutants (Figure 2) suggested that an elevated

phosphatidylethanolamine (PE) concentration could have a role in

SLD formation, given that PE is also a cone-shaped phospholipid

that can increase membrane curvature, thereby promoting LD

monolayer coalescence [11]. Consistent with this notion, mutants

known to accumulate PE also displayed a higher percentage of

cells forming SLDs, particularly opi3D, ino2D, and ino4D (Table 1).

As shown in Figure 6A, our lipidomic analysis further revealed

that lipid droplets isolated from cho2D, ino2D, and ino4D also had a

higher PE to PL (total membrane phospholipids) ratio than those

of WT cells. In addition, ethanolamine treatment significantly

Table 1. Yeast gene deletions that lead to the formation of supersized LDs (SLDs).

SLD ORF Gene Function % of cells with SLDs*

SC media YPD media

1 YLR404W FLD1, SEI1 Unknown 66.161.0 22.363.7

2 YGR157W CHO2 PE methyltransferase 60.965.8 0.560.5

3 YJR073C OPI3 Phospholipid methyltransferase 89.363.2 0.760.3

4 YDR123C INO2 Transcription factor 97.061.0 0.360.3

5 YOL108C INO4 Transcription factor 96.361.6 0.560.0

6 YBR147W RTC2 Unknown 71.062.7 0.760.3

7 YGR165W MRPS35 Unknown 69.365.1 0.360.3

8 YGL019W CKB1 Beta regulatory subunit of casein kinase 2 32.863.4 0.560.5

9 YOR039W CKB2 Beta’ regulatory subunit of casein kinase 2 20.063.2 0.760.3

10 YBR029C CDS1 CDP-DAG synthase 46.663.7 29.165.6

WT 0.760.3 0.360.3

Cells were grown in synthetic complete (SC) media or rich YPD media to stationary phase, stained with Nile red, and observed under a fluorescence microscope for LDs.
Experiments were done in triplicates and ,200 cells were counted for all strains each time. The percentages of cells that displayed SLDs were represented as mean6SD.
SC has 11 mM inositol because it contains yeast nitrogen base.
doi:10.1371/journal.pgen.1002201.t001
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increased the proportion of PE on lipid droplets of fld1D and cds1

cells. Even in LDs of ino4D cells, ethanolamine addition still

moderately increased the PE to PL ratio, though its PE level was

already much higher than WT. However, elevated PE alone was

not able to induce SLD formation since inositol addition com-

pletely abolished the biogenesis of supersized LDs despite that a

higher PE to PL ratio persisted in ino4D cells (Figure 6A).

Moreover, SLDs were abundant in cds1 where the PE/PL ratio

was lower than that of the WT (Figure 6A and Figure S4).

Reduced PL-to-TAG ratio does not completely correlate
with the formation of SLDs

A decreased phospholipid (PL) to TAG ratio could also induce

SLD formation, since coalescence may be induced to decrease the

surface-to-volume ratio of droplets when phospholipids are

limiting [11]. This model appears to be true for the mutants

grown in SC media. However, when grown in YPD media, SLDs

disappeared in cho2D, ino2D and ino4D strains but the decreased

PL to TAG ratio persisted (Figure 6B). In addition, inositol

supplementation did not increase the phospholipid to TAG ratio

in cds1 or ino4D mutant (Figure 6B).

Rtc2p and Mrps35p, new players in phospholipid
metabolism

Choline addition completely inhibited SLD formation in rtc2D
and mrps35D, in a manner similar to cho2D, opi3D, ino2D, and

ino4D, strains known to be defective in the methylation of PE into

PC (Figure 2). This phenotype suggests that deletion of RTC2 or

MRPS35 might affect PC synthesis through the PEMT pathway.

As expected, lipidomic analysis revealed that rtc2D and mrps35D
strains displayed a 2.5-fold increase of PE to PC ratio, indicating

these two gene products are involved in PC synthesis through the

PEMT pathway (Figure 7). rtc2D and mrps35D cells also syn-

thesized ,60% more phosphatidylinositol (PI) than WT, possibly

resulting from the accumulation of CDP-DAG due to a blocked

PEMT pathway (Figure 7 and Figure S4A). We also examined the

phospholipid profiles of ckb1D and ckb2D strains and found that

both synthesized less PC and PE than WT without causing

Figure 2. Treatment of different phospholipid precursors exerts distinct effects on the formation of SLDs. WT and mutants were
cultured in SC media supplemented without (con) or with 1 mM choline (C), 1 mM ethanolamine (E), or 75 mM inositol (I) to stationary phase and
observed under a fluorescence microscope. A). Microscopic images. Bar, 5 mm. B). Percentage of cells containing SLDs. *, p,0.01.
doi:10.1371/journal.pgen.1002201.g002

Seipin, Lipin, and Supersized Lipid Droplets
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significant changes in the PE to PC ratio (Figure 7 and Figure

S4A).

LDs of sld mutants demonstrated enhanced fusion
activities both in vivo and in vitro

We next investigated how changes in phospholipids in the sld

mutants may lead to the formation of SLDs. One possibility could

be enhanced fusion activities as previously suggested [12]. Indeed,

fusion of Nile red-stained LDs could be observed in cho2D, opi3D,

ino2D, ino4D, and cds1 strains (Figure 8, Videos S1 and S2), and

also in rtc2D, mrps35D, ckb1D and ckb2D strains (not shown). The

fusion frequency of LDs in each mutant was similar (,10 out of

200 adjacent pairs of LDs) to that of fld1D [12]. Furthermore, LDs

isolated from representative strains demonstrated fusion activities

in vitro (Videos S3 and S4). It should be noted that no fusion events

in wild type yeast cells were ever observed with the methods

employed.

Phosphatidic acid induces fusion of artificial LDs in vitro
To obtain direct evidence that PA induces coalescence of small

LDs to form supersized droplets, artificial LDs were made and

their stability tested. After generating the artificial droplets by

sonication, we removed liposomes formed at the same time by

density gradient centrifugation. This fractionation also concen-

trated the artificial droplets. From this starting point, we followed

the stability of LDs by light scattering, which directly measures the

number of LDs. When we increased the concentration of PA in

Figure 3. A link between the formation of SLDs and an elevated
level of cellular PA. A&B). Quantitation of cellular PA in WT and
mutants. Cells were grown in SC medium to early stationary phase,
harvested, and lyophilized. Lipids were extracted and PA levels were
determined by LC-MS. *, p,0.05, compared to WT. C). Overexpression
of PAH1 and DPP1 significantly reduces the formation of SLDs in fld1D,
ino2D, and ino4D strains. Cells transformed with BG1805-PAH1, BG1805-
DPP1 (both from Open Biosystems) or empty vector were cultured in
synthetic galactose medium (2% galactose, 0.67% yeast nitrogen base,
and amino acids) to stationary phase, stained with Nile red, and
examined for the presence of SLDs.
doi:10.1371/journal.pgen.1002201.g003

Figure 4. Fld1p and cellular PA. A) The gene expression fold
changes (fld1D/WT) for selective genes involved in phospholipid
metabolism as determined by microarray analysis. Cells were cultured
in YPD medium until log phase (OD600,0.8). The expression levels of
INO1 and OPI3 were significantly upregulated in fld1D cells. *, p,0.01
(ANOVA, FDR ,0.05). B) Relative mRNA levels of INO1 and OPI3 as
determined by qPCR in WT and fld1D strains and normalized to ACT1. *,
p,0.01. C) WT and fld1D cells without or with (+Ino) inositol treatment
were grown to late log phase. Microsomes were isolated as described in
methods. Lipids were extracted and the amounts of PA were
determined by mass-spectrometry. #, p,0.05, compared to WT.
doi:10.1371/journal.pgen.1002201.g004

Figure 5. SLD formation in yeast cells deficient in PA
phosphatase activity. A&B) Formation of SLDs in pah1D, but not in
dga1D or dga1D lro1D strains. Bar, 5 mm. C) Relative cellular TAG
amounts quantified by thin layer chromatography and densitometry. D)
Addition of 1 mM membrane-permeable DAG analog (1,2-dioctanoyl-
sn-glycerol) and 1 mM oleate, but not oleate alone, significantly
elevated the percentage of pah1D cells accumulating supersized LDs.
Cells with supersized LDs were counted and the percentages were
presented as mean6SD.
doi:10.1371/journal.pgen.1002201.g005

Seipin, Lipin, and Supersized Lipid Droplets
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artificial LDs, their number decreased significantly during

incubation (Figure 9). In the presence of PE, a smaller fraction

of PA (,3% molar ratio, PC:PE:PA 3:1:0.13) achieved a similar

effect compared to the coalescence observed in the presence of PC

covered LDs (,5% PA (PC:PA 20:1). These results show that PA

reduces the stability of LDs and mediates coalescence of LDs, and

that this property of PA may be modulated by the phospholipid

composition of LDs.

Discussion

Lipid droplets are dynamic organelles whose number and size

undergo constant changes in response to internal and external cues

[1,3]. The physiological relevance of the size of the LDs is not well

understood, and far less is known about how the size of LDs is

determined at the molecular level. In this study, we identify key

proteins that govern the size of LDs in yeast by modulating

phospholipid metabolism. We also identify proteins previously

unknown to regulate phospholipid metabolism. Most importantly,

we provide in vivo and in vitro evidence that phosphatidic acid can

influence the size of the LDs.

SLDs provide an efficient form of fat storage in terms of surface

to volume ratio. Do cells automatically generate SLDs upon lipid

loading to economize on the synthesis of phospholipids that form

the surface of lipid droplets? While large lipid droplets are typical

in white adipocytes, most other cell types (brown adipocytes,

hepatocytes, myocytes) store lipids in numerous small LDs. In WT

yeast cells, a dramatic increase in the number but not size of LDs is

often observed in growth conditions favoring neutral lipid synthesis

and storage, such as starvation. Maintaining small LDs may be

physiologically important: upon starvation, yeast cells convert

phospholipid intermediates and sterols to neutral lipids which in

turn can be hydrolyzed to release fatty acids and sterols for

immediate membrane synthesis and cell growth when glucose

becomes available. It has also been recently reported that lipolysis

is important for efficient cell-cycle progression in yeast [26], and

lipolysis occurs more efficiently for small LDs (Figure S2 and

[8,11]). Therefore, it appears that SLDs are only formed in highly

specialized, non-dividing cells (e.g. fully differentiated white adi-

pocytes) or under pathological conditions such as severe hepatic

steatosis.

Genetic factors that regulate the size of LDs were identified in

two separate screens in yeast and in Drosophila S2 cells [11,12].

Decreased PC synthesis, and consequently an increased PE to PL

ratio (or a decrease in PC/TAG), has been associated with SLD

formation (Figure 1) [11]. LDs are phase-separated organelles in

the cytoplasm. Thus, unlike for other organelles, the steady state

and lowest energy state is probably to have only one droplet (this

Figure 6. PE/PL and PL/TAG ratios of LDs. A) PE/PL ratio of LDs
isolated from WT and mutants grown in SC medium, and of LDs isolated
from ino4D, fld1D, and cds1 cells cultured in SC medium without (con)
or with the addition of choline (C), ethanolamine (E), or inositol (I). B)
PL/TAG ratio of LDs isolated from WT and mutants grown in SC medium
or YPD medium, and of LDs isolated from ino4D, fld1D, and cds1 cells
cultured in SC medium without (con) or with the addition of choline (C),
ethanolamine (E), or inositol (I). *, p,0.01; **, p,0.05, compared to WT.
doi:10.1371/journal.pgen.1002201.g006

Figure 7. rtc2D and mrps35D strains exhibit a higher PE/PC ratio.
WT and mutants were cultured in SC medium to early stationary phase.
Cellular amounts of major phospholipid species were analyzed by LC-
MS. #, p,0.05; *, p,0.01, compared to WT.
doi:10.1371/journal.pgen.1002201.g007

Figure 8. The mutant strains that produce SLDs display
enhanced LD fusion activity in vivo. Cells were grown in SC media
until mid-log phase (OD600,1.5), stained with Nile red and examined
for LD fusion activities under fluorescence microscope. Cells in which
two or several LDs lay close together were targeted. Images were taken
at a 0.5 s interval. Bar, 5 mm.
doi:10.1371/journal.pgen.1002201.g008
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would minimize interfacial surface energy). Some phospholipids

(specifically PC) shield droplets from coalescence. Fusogenic lipids

such as PA and PE could overcome this effect. In agreement with

this notion, we found that PE and PA both have an effect on SLD

formation. First, treatment of ethanolamine further increased PE

to PL ratio and enhanced SLD formation in most mutants

(Figure 2 and Figure 6); in addition, strains with increased levels of

both PE and PA also had a higher percentage of cells producing

supersized LDs (Table 1). Decreased levels of PLs also could lead

to SLD formation, since phospholipids levels may not be sufficient

under these conditions to prevent the hydrophobic TAG phases to

fuse. If the amount of PLs on LDs is not sufficient, fusion would

occur until the surface-to-volume ratio of LDs is reflecting the ratio

of phospholipids to TAG. At this point the monolayer would shield

the LD from any further fusion.

Identification of the cds1 mutant through the screening of the

knock-down collection of essential yeast genes turned our attention

to PA, whose critical role in SLD formation was confirmed by the

strong ‘‘size-reduction’’ effect of inositol supplementation, an

efficient and reliable way to reduce PA in yeast. The essential role

of PA in SLD formation was further confirmed when all mutants

that develop SLDs were found to accumulate PA (Figure 3),

including the seipin-deficient (fld1D) (Figure 4) and lipin-deficient

(pah1D) (Figure 5A and 5B) cells. PA is a central intermediate in

the synthesis of major glycerolphospholipids and TAG, as well as

an important signaling lipid [25,37,38]. Different pools of PA and

distinct PA subclasses may account for the diversity of PA function.

For instance, the yeast Opi1p (ER localized transcription

repressor) senses only a PA pool on the ER but not the plasma

membrane PA pool regulated by the yeast phospholipase D

Spo14p [33]. Deleting or overexpressing SPO14 did not have any

impact on the formation of SLDs (data not shown), suggesting that

an intracellular (ER/LD) PA pool is responsible for SLD

formation. This appears to be also the case for the fld1D mutant,

in which the level of microsomal PA, but not overall PA, is

significantly increased. The level of PA on the ER could very well

reflect the amount of PA on the LDs, given that LDs are believed

to originate from the ER. In summary, we find here that increased

PA levels may overcome the effect of phospholipid shielding, and

that the location of PA also matters.

Besides establishing a strong link between PA and the size of

LDs, our screen also reveals that Rtc2p and Mrps35P can regulate

the PEMT pathway of PC synthesis. Both Rtc2p and Mrps35p

were found to associate with mitochondria by proteomic studies

[39,40]. We are currently undertaking experiments to understand

the role of these two proteins in phospholipid metabolism. Exactly

how ckb1D and ckb2D mutants cause a significant increase in

cellular PA and thereby the formation of SLDs is not clear,

although the key transcription factor that regulates phospholipid

synthesis in the yeast, Opi1p, can be phosphorylated and regulated

by casein kinase 2 [41].

Finally, the mechanistic link between changes in the level of

PA/PE and the formation of SLDs was investigated. LDs are

covered by a monolayer of phospholipids, whose composition may

have a profound effect on the dynamics of the LDs. Both PA and

PE are cone-shaped, fusogenic lipids that can alter the curvature of

the membranes. PA, in particular, has been shown to promote

both SNARE dependent and independent membrane fusion

events [28,29]. It is possible that a higher level of PA on the

monolayer of the LDs would promote spontaneous fusion of

contacting LDs. Indeed, in vivo microscopic observation found

increased incidents of LD fusion in mutants with increased level of

PA (Figure 8 and Videos S1, S2, S3, S4). Remarkably, when

artificial LDs are made with different ratios of PA, PE and PC, it is

clear that even a small amount of PA could significantly increase

the size of the LDs (Figure 9).

In summary, studies described herein identify novel protein and

lipid regulators of the size of the LDs, an important lipid-storage

organelle. Knowing how LD size is determined may provide

invaluable insights into how human cells/tissues handle abnormal

influx of lipids in today’s obesogenic environment.

Materials and Methods

Yeast strains
S. cerevisiae wild type strain BY4741 (MATa; his3D1; leu2D0;

met15D0; ura3D0) and its derived non-essential gene-deletion

strains were either obtained from EUROSCARF or generated

in this study. The latter included pah1D (PAH1::HIS3MX6), and

dga1Dlro1D (DGA1::kanMX4, LRO1::hphNT1). The Tet-promoter

strains used for expression of essential genes under the regulatable

TetO7 promoter were obtained from Open biosystems.

Reagents
Yeast extract, peptone, dextrose, and yeast nitrogen base were

purchased from BD. Nile red, choline, ethanolamine, inositol,

doxycycline, cerulenin, and Ficoll 400 were from Sigma. 1, 2-

dioctanoyl-sn-glycerol 3-phosphate (PA 8:0/8:0), 1, 2-dioleoyl-sn-

glycero 3-phosphate (PA 18:1/18:1), oleoyl-L-a-lysophosphatidic

acid, 1,2-dioctanoyl-sn-glycerol (DAG 8:0/8:0), phosphatidyleth-

anolamine, phosphatidylcholine, and triolein were purchased from

Avanti Polar Lipids.

To screen for yeast mutants that generate supersized LDs, cells

were cultured in synthetic complete media (0.67% yeast nitrogen

base, 2% dextrose, and amino acids) in 96-well plates at 30uC till

stationary phase. For TetO7-regulated strains, 15 mg/ml doxycy-

cline was added to repress specific genes. Cells were stained with

20 mg/ml Nile red for LDs and observed by fluorescence micro-

scopy. Yeast strains found to contain SLDs were recultured in

synthetic complete media with aeration in 10 ml culture tubes to

confirm the phenotype. These strains were also grown in YPD

Figure 9. Stability and size of TAG containing artificial droplets
consisting of the indicated molar ratios of the phospholipids
were determined by light scattering. The artificial droplets were
generated by sonication, and liposomes formed at the same time were
removed by density gradient centrifugation. The stability/number of
LDs was measured by light scattering. Values are mean 6 SD of three
experiments.
doi:10.1371/journal.pgen.1002201.g009
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media (1% yeast extract, 2% peptone, and 2% dextrose) to

examine the morphology of LDs.

For phospholipid precursor treatment, synthetic complete

medium was supplemented with 1 mM choline, 1 mM ethanol-

amine, or 75 mM inositol.

Fluorescence microscopy
Fluorescent imaging was performed under a Leica CTR5500

microscope (Wetzlar, Germany) with an EL6000 fluorescent lamp.

Images were taken with a DFC300 FX digital camera and a Leica

LAS AF software. Yeast cells were viewed under a6100/1.30 oil

immersion objective lens. A 4502490-nm bandpass excitation

filter, a 510 dichromatic mirror, and a 515-nm longpass emission

filter (Leica filter cube I3) were chosen to observe Nile red-stained

LDs. For statistical presentation of the percentage of cells con-

taining supersized LDs, 200 cells were observed and percentage

was calculated. The experiments were done in triplicates and the

result was shown as mean 6 SD. Mammalian LDs were stained

with Bodipy 493/503 (Invitrogen) and observed with a 470/40-nm

bandpass excitation filter, a 500-nm dichromatic mirror, and a

525/50-nm bandpass emission filter (Leica filter cube GFP).

To observe and record LD fusion, 3 ml of mid-log phase cells

(OD600,1.5) or purified LDs were stained with Nile red, spotted

on a slide and covered with a coverslip. Under the microscope,

cells in which two or several LDs lay close together were targeted.

Images were collected at 0.5 second intervals.

Transmission electron microscopy
Cells were grown in rich medium until stationary phase,

harvested, fixed with 2.5% glutaraldehyde and postfixed with 2%

(w/v) osmium tetroxide. The samples were subsequently dehy-

drated in a series of graded ethanol and embedded in Spurr’s

Resin. 80 nm ultrathin sections were stained with uranyl acetate

and lead citrate and examined under a JEM-1230 Joel electron

microscope.

Total RNA was extracted using the RNeazy Plus kit (QIA

GEN). cDNA was generated from total RNA using a SuperScript

VILO cDNA Synthesis Kit (Invitrogen). PCR reaction was

performed using Rotor-Gene RG-3000A (Qiagen). Threshold

cycle value for each gene was acquired at the log phase and gene

expression was normalized to reference genes as indicated. For

Affymetrix Array processing and analysis, samples were prepared

according to the Affymetrix GeneChipH Yeast Genome 2.0 Array

protocol. Differences between WT and fld1D strains were

compared using one-way ANOVA and adjusted for false discovery

rate at 0.05 level. Array data is deposited on Gene Expression

Omnibus (http://www.ncbi.nlm.nih.gov/geo/).

Isolation of microsomes
Microsomes were isolated as described [42]. Briefly, WT and

fld1D cells were cultured in SC media till log phase (OD600,1.0)

and harvested. Cells as 0.1 g (wet weight) /ml in 0.1 M Tris SO4

were sequentially incubated in pH9.4/10 mM DTT for 10 min,

and in 1.2 M sorbitol/20 mM Tris Cl, pH7.5/1x SC medium/

zymolase 100 T (15 mg/ml) for 30 min. Spheroplasts were lysed

in HEPES lysis buffer (10 mM HEPES/KOH, pH6.8/50 mM

potassium acetate/100 mM sorbitol/2 mM EDTA) with the aid of

a Dounce homogenizer. After removal of cell dedris, lysates were

centrifuged at 30 000 g for 10 min at 4uC. P30 000 g membrane

pellets were resuspended in HEPES lysis buffer, loaded onto

1.2 M/1.5 M sucrose (prepared in HEPES lysis buffer) gradients,

and centrifuged at 100 000 g for 1 h at 4uC. ER membranes were

collected at the 1.2 M/1.5 M sucrose interface.

Lipid droplets
Lipid droplets were isolated as described previously [12].

Isolation and analyses of lipids
Lipids were extracted from zymolase-digested lyophilized yeast

cells, isolated ER microsomes or lipid droplets. Briefly 900 ml ice-

clod chlorofom:methanol (1:2) was added to samples. Mixtures

were vigorously vortexed for 1 min, and incubated for 2 h in

vacuum container with rotary shaking at 4uC. Then 400 ml ice-

cold water and 300 ml chloroform were added, vortexed and

incubated on ice for 1 min. After centrifugation at 12000 rpm for

3 min at 4uC, the lower organic phase was collected. Subsequent-

ly, 50 ml 1 M HCl and 500 ml chloroform were added to the

remainder, vortexed, and incubated on ice for 3 min. The lower

organic phase was also collected after centrifugation at 12000 rpm

for 3 min at 4uC, and combined with the first extract. The ex-

tracted lipids were blown dry with nitrogen gas, and resuspended

in solvent for mass spectrometry analysis.

Lipidomic analysis, and quantitative measurement of neutral

lipids via thin layer chromatography (TLC) were performed as

described [12,43]. TLC plates were developed in chloroform/

methanol/water (65:25:4) to separate phospholipid species.

In vitro fusion assay of artificial lipid droplets
To prepare lipid emulsions, lipids were mixed in chloroform/

methanol (2:1), dried under a stream of N2, resuspended in buffer

(150 mM NaCl, 50 mM Tris/HCl, pH 7.5, 1 mM EDTA,), and

sonicated. For emulsions, the molar ratio of TAG to total

phospholipids was 2:2.5. Contaminating vesicles were removed,

and LDs were concentrated by ultracentrifugation at 100,000 g for

15 min. For light scattering, lipid concentration was 25 mM

phospholipids and 20 mM TAG before centrifugation.

Statistical analysis
All data are presented as mean 6 SD. Statistical comparison

between the two groups was performed using Student’s t-test.

Microarray data were analyzed using one-way ANOVA and

adjusted for false discovery rate at 0.05 level.

Supporting Information

Figure S1 Biosynthetic pathways of major phospholipids and

TAG in S. cerevisiae. PA, phosphatidic acid; CDP-DAG, CDP-

diacylglycerol; PI, phosphatidylinositol; PS, phosphatidylserine;

PE, phosphatidylethanolamine; PMME, phosphatidylmonomethy-

lethanolamine; PDME, phosphatidyldimethylethanolamine; PC,

phosphatidylcholine; DAG, diacylglycerol; TAG, triacylglycerol.

Grey-shaded enzymes are under the control of the Ino2p-Ino4p

complex.

(TIF)

Figure S2 In vivo TAG mobilization of WT, fld1D, ino4D, and

cds1 in the presence of 10 mg/ml cerulenin. Cells were grown in

SC medium for 24 hr, and refreshed in YPD medium supple-

mented with 10 mg/ml cerulenin to OD600,1.5. Cells were

collected at indicated time points, followed by fluorescence

microscopy and lipid analysis.

(TIF)

Figure S3 The effect of DPP1 and PAH1 expression on cellular

lipids. A) Total cellular PA as measured by mass-spectrometry.

*, p,0.01, compared to vector control. B) Major phospholipids on

lipid droplets measured by mass-spectrometry. Lipid droplets were

isolated as described in Materials and Methods.

(TIF)

Seipin, Lipin, and Supersized Lipid Droplets

PLoS Genetics | www.plosgenetics.org 9 July 2011 | Volume 7 | Issue 7 | e1002201



Figure S4 Relative cellular levels of PC, PE and PI in WT and

mutants as determined by thin layer chromatography (TLC).

Densitometric analysis was performed using the Image Gauge 4.0

software (Fujifilm Science Lab).

(TIF)

Video S1 cho2D display enhanced fusion activity of LDs in vivo.

Cells were grown in SC medium until mid-log phase (OD600

= ,1.5), stained with Nile red and examined for LD fusion

activities by fluorescence microscopy. Cells in which two or several

LDs lay close together were targeted. Images were taken at a 0.5

second interval.

(AVI)

Video S2 ino2D display enhanced fusion activity of LDs in vivo.

Cells were grown in SC medium until mid-log phase (OD600

= ,1.5), stained with Nile red and examined for LD fusion

activities by fluorescence microscopy. Cells in which two or several

LDs lay close together were targeted. Images were taken at 0.5

second interval.

(AVI)

Video S3 Fusion of LDs in vitro. fld1D cells were cultured in SC

media until early stationary phase. LDs were isolated and

resuspended in PBS. The mixture was then stained with Nile

red and 3 ml was spotted onto a slide. Under the microscope, two

or several LDs lying close together were targeted. Images were

taken at a 0.5 s interval.

(AVI)

Video S4 Fusion of LDs in vitro. ino2D cells were cultured in SC

media until early stationary phase. LDs were isolated and

resuspended in PBS. The mixture was then stained with Nile

red and 3 ml was spotted onto a slide. Under the microscope, two

or several LDs lying close together were targeted. Images were

taken at a 0.5 s interval.

(AVI)
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