# Difracción de Rayos X de Proteínas

- Aspectos experimentales: equipos de Introducción difracción y procesado de datos. **5**. 1. 2. Simetripoducción de rayos X. Cristales y su obtención. 3. Dimoc Generadores de Kayos X: 4. Aspectos experimentales, equipos de difracción y procesado de datos. 5. El Problema de la Fase: métodos de Detectores de rayos X. resolución estructural. 6.
- 7. Refinamiente, experieded y validación estructural.
- 8. Aptica diánes a da de datos de difeta de informa de la companya de la companya

#### **FUENTES DE RAYOS X**



### Sincrotrón.

- Policromático.
- Sintonización de la  $\lambda$ .
- Brillo altísimo.



### Ánodo rotatorio.

- Monocromático.
- λ = 1.5418 Å
- Brillo moderado.





#### **FUENTES DE RAYOS X**



#### Producción de los Rayos X.





Distribución de longitudes de onda de los rayos X que se producen en tubos convencionales de rayos X con ánodo de cobre (Cu), o molibdeno (Mo).Sobre espectro contínuo aparecen las líneas características K-alpha y K-beta.

#### **FUENTES DE RAYOS X**



#### Anodo Rotatorio.





- Monocromático ( $\lambda$  = 1.5418 Å).
- Intensidad moderada.

#### SINCROTRÓN



Electrons emitted by an electron gun are first accelerated in a linear accelerator (linac) and then transmitted to a circular accelerator (booster synchrotron) where they are accelerated to reach an energy level of 6 billion electronvolts (6 GeV).

These high-energy electrons are then injected into a large storage ring --844 metres in circumference --where they circulate in a vacuum environment, at a constant energy, for many hours.

#### SINCROTRÓN















# CMBE

#### LA LINEA DE RADIACIÓN SINCROTRON



### Cabaña Óptica







### Cabaña Experimental









#### Cabaña Experimental

# Montaje automático de cristales en Sincrotrón.



SSRL



#### BM30A-ESRF











#### Cabina de Control



#### **DETECTORES DE RAYOS X**







### CCD

- Área de detección pequeña.
- Tiempos de impresión y lectura cortos.
- goniómetro con varios grados de libertad.

### Image Plate

- Área de detección grande.
- Tiempos de impresión y lectura largos.
- goniómetro con un único grado de libertad.

#### SISTEMAS DE DETECCION DE RAYOS X





CCD

ImagePlate



Axiom

#### MONTAJE EXPERIMENTAL DE CRISTALES DE PROTEINAS







Método oscilatorio



#### Las etapas fundamentales del análisis de datos

#### 1. Indexación.

Inspección visual de las imágenes de difracción.

Auto indexado.

Determinación de los parámetros del cristal: celda unitaria, grupo de Laue probable, orientación del cristal, estimación de la mosaicidad.

Refinamiento de la geometría de la difracción.

#### 2. Integración.

Integración de los picos de difracción, refinando simultáneamente la orientación del cristal, su mosaicidad y los parámetros del detector.

#### 3. Ensamblado y escalamiento.

Conversión de los datos a una escala común.

Determinación de la simetría y ensamblado de las reflexiones relacionadas por simetría.

Sumatoria estadística y estimación de los errores.



#### **Tres etapas**





#### Programas para el procesamiento de datos

- 1 y 2. Indexación e integración
- En dos dimensiones: MOSFLM (paquete CCP4) http://www.mrclmb.cam.ac.uk/harry/mosflm/ Denzo (paquete HKL) http://www.hkl-xray.com/
- En tres dimensiones: d\*TREK http://www.rigaku.com/software/dtrek.html XDS http://www.mpimf-heidelberg.mpg.de/~kabsch/xds/
- 3. Escalamiento
- Scala (paquete CCP4) http://www.ccp4.ac.uk/html/scala.html Scalepack (paquete HKL)



| Select item        |                                                                             |                                                           |                                                                        |
|--------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------|
| Main menu          | Edits allowed                                                               | y<br>Select item                                          | • [                                                                    |
|                    | Processing params a. 0.00                                                   | Main menu                                                 | Min 1 Max 700 Cursor position                                          |
| Read image         | b : 0.00<br>c : 0.00                                                        | Read image                                                | Colour VBlack on white Mag V x4 PS Zoom                                |
| Find spots         | beta : 0.00<br>gamma : 0.00                                                 | Find spots<br>Edit spots                                  |                                                                        |
| Edit spots         | PsiX : 0.00<br>PsiY : 0.00<br>PsiZ : 0.00                                   | Clear spots                                               |                                                                        |
| Clear spots        | Mosaic : 0.000<br>Divh : 0.000                                              | Select images                                             |                                                                        |
| Select images      | Lambda : 1.542<br>Distance: 120.00                                          | Estimate mosaicity                                        |                                                                        |
| Autoindex          | Beam X : 90.00<br>Y : 90.00<br>CCOMEGA : 0.000                              | Predict<br>Clear prediction                               |                                                                        |
| Estimate mosaicity | ROFF         0.00           TOFF         0.00           YEON         1.0000 | Adjust                                                    |                                                                        |
| Predict            | Pick area: X: 11<br>Y: 11                                                   | Refine cell<br>Integrate                                  |                                                                        |
| Clear prediction   | Int threshold: 20<br>Vector scale 1<br>Two theta 0.00                       | Strategy                                                  |                                                                        |
| Adjust             | Resolution 0.00<br>*SPOT SEARCH*                                            | Find hkl                                                  |                                                                        |
| Refine cell        | Rmin         9.00           Rmax         81.00                              | Pick                                                      |                                                                        |
| Integrate          | X offset 0.00<br>Y offset 0.00<br>Min X size 0.50                           | Circles                                                   | Waiting for input                                                      |
| Strategy           | Max X size 2.00<br>Min Y size 0.50<br>Max V size 2.00                       | Beam / backstop                                           |                                                                        |
| Keyword input      | Min no of pix 6<br>X splitting 0.30                                         | Save/Exit                                                 | iteres estimates -                                                     |
| Find hkl           | AUTOINDEXING*<br>Min I/siq(I): 20                                           |                                                           |                                                                        |
| Pick               | Prompts On                                                                  | Pixel X, Y 1801 0<br>XC, YC mm 180.0 0.0                  |                                                                        |
| Measure cell       | After refinement No<br>After integration No                                 | Resolution 0.00<br>Indices 0 0 0<br>F Phi 0.00 width 0.00 |                                                                        |
| Circles            | Timeout mode Off                                                            | Intensity O<br>Sigma O                                    |                                                                        |
| Beam / backston    |                                                                             | Spacing A 0.000<br>Average 0.0                            |                                                                        |
| Dean / Dackstop    |                                                                             | Rms 0.0<br>Number 0<br>Zoomfactor 0                       |                                                                        |
| Save/Exit          |                                                                             | Circle resolution A<br>0.0 0.0 0.0 0.0<br>Phi 0.00 0.75   |                                                                        |
|                    |                                                                             | Missets ThetaX, Y, Z<br>0.00 0.00 0.00                    | Blue: fulls, Yellow: partials, Red: overlaps<br>Green: too wide in phi |



| Input reply                                                                                                                                                    |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| List of possible Laue groups, sorted on penalty index.<br>The lower the PENALTY, the better                                                                    |  |  |  |  |
| Only solutions with PENALTY less than 200 are listed, a complete list is given in the terminal window                                                          |  |  |  |  |
| 20 190 oC 61.80 265.83 61.83 87.3 101.9 103.3 c222, c2221                                                                                                      |  |  |  |  |
| 19 190 mC 265.83 61.80 61.83 101.9 92.7 76.7 C2<br>18 190 oC 61.80 265.83 61.83 87.3 101.9 103.3 C222,C2221                                                    |  |  |  |  |
| 17 189 mC 265.83 61.80 61.83 101.9 92.7 76.7 C2<br>16 189 mC 61.80 265.83 61.83 92.7 101.9 76.7 C2                                                             |  |  |  |  |
| 15 189 mC 61.83 265.90 61.80 92.7 101.9 76.6 C2                                                                                                                |  |  |  |  |
| 13 94 hP 61.80 61.83 129.33 90.0 90.1 101.9 P3, P31, P32, P312, P312, P3121, P3212, P3221                                                                      |  |  |  |  |
| P6, P61, P65, P62, P64, P63, P622, P6122, P6522, P6222, P6422, P6322<br>12 93 mC 61.80 126.31 129.33 90.0 90.1 73.3 C2                                         |  |  |  |  |
| 11 93 mC 126.31 61.80 129.33 90.1 90.0 73.3 C2<br>10 34 tP 61.80 61.83 129.33 90.0 90.1 101.9 P4,P41,P42,P43,P422,P4212,P4122,P41212,P4222,P42212 P4322,P43212 |  |  |  |  |
| 9 34 oP 61.80 61.83 129.33 90.0 90.1 101.9 P222, P2221, P21212, P212121<br>8 33 mP 61.80 61.83 129.33 90.0 90.1 101.9 P2.P21                                   |  |  |  |  |
| 7 33 mP 61.80 61.83 129.33 90.0 90.1 101.9 P2,P21                                                                                                              |  |  |  |  |
| 5 1 oC 77.87 96.03 129.33 89.9 90.0 90.0 c222,c2221                                                                                                            |  |  |  |  |
| 4 1 mC 77.87 96.03 129.33 89.9 90.0 90.0 C2<br>3 1 mP 61.80 129.33 61.83 90.0 101.9 90.1 P2,P21                                                                |  |  |  |  |
| 2 U aP 61.80 61.83 129.33 90.0 89.9 78.1 P1<br>1 0 aP 61.80 61.83 129.33 90.0 90.1 101.9 P1                                                                    |  |  |  |  |
| Select a solution AND a spacegroup from list above (eg 3 p42) or 0 to abandon or T to change min I/sig(I):_                                                    |  |  |  |  |
|                                                                                                                                                                |  |  |  |  |
|                                                                                                                                                                |  |  |  |  |
|                                                                                                                                                                |  |  |  |  |
|                                                                                                                                                                |  |  |  |  |
|                                                                                                                                                                |  |  |  |  |
|                                                                                                                                                                |  |  |  |  |
|                                                                                                                                                                |  |  |  |  |





| 1        | Min 1Max 750Overlay () on      | Cursor position  |
|----------|--------------------------------|------------------|
| 1 Partie | <b>Colour</b> 🛛 Black on white | Mag ⊽ x4 PS Zoom |
|          |                                |                  |
|          |                                |                  |
|          |                                | • <b>•</b>       |
|          |                                |                  |
|          |                                |                  |





1. Montaje y Transporte de cristales de proteína

### 2. Cargador de muestras:







LN2 Tank and

- Holds up to 50 samples stored in 5 baskets of 10 samples each
- MUST be used in conjunction with SPINE sample holder
- Integrated data matrix reader for sample tracking

SAMPLE CHANGER 4 baskets prototype

### 2. Cargador de muestras: Interface gráfica



#### 3. Visualización de la muestra y centraje















- Assisted "3 Clicks" : Rapid and accurate!
- □ Automated crystal centering (~80% successful)



### En un futuro muy muy cercano....

#### The Missing Link : ISPyB Pocket Sample

Links the Crystallization information system to the data collection information system





### Biocristalografía: El experimento en el futuro?



# Difracción de Rayos X de Proteínas

- 16. Introducióna de la Fase: métodos de
- 2. Simeasalución estructural.
- 3. stEllesoylemade en faten.
- Difracción de Rayos X. La función de Patterson.
   Aspectos experimentales: equipos de difracción y procesado de datos. Reemplazamiento multiple isomorfo (MIR).
   El Problema de la Fase: métodos de
  - Euclétodos MAD. tural.
- 7. Refinamiento, modelado y validación
- 8. Aplicación: relaciones estructura-función.



EL PROBLEMA DE LA FASE....





 $\rho (x y z) = 1/V \Sigma |F(h k I)| \exp \{-2\pi i (hx+ky+Iz)+ i \Phi (h k I)\}$
## **IMPORTANCIA DE LA FASES....**





# Efecto de las amplitudes de difracción

• La película muestra el efecto (casi imperceptible) de calcular un mapa de densidad electrónica con amplitudes (intensidades de de difracción) erróneas, es decir, muy mal medidas.

Las imágenes de esta película representan el cambio gradual de las amplitudes (desde valores razonables de desacuerdo con las teóricas, R=10%, hasta valores aleatorios, R=75%).Es interesante darse cuenta de que si las fases son correctas (tal como es el caso) el mapa apenas cambia hasta llegar a valores de R=30% y que es todavía interpretable hasta valores próximos a R=50%.



# Efecto de las fases

La película de la derecha muestra el efecto del cálculo de un mapa de densidad electrónica con fases mal estimadas. La "figura de mérito" de las fases (el coseno del error de la fase) se muestra como "m". Obsérvese la fuerte dependencia existente entre la bondad de las fases y la apariencia del mapa para poder reconocer la localización de los átomos.



## EL PROBLEMA DE LA FASE.... ¿¿¿CÓMO RESOLVERLO???



## Métodos de Faseado

Métodos directosρ≥0, átomos discretosRemplazamiento MolecularModelo homólogoRemplazamiento IsomorfoSubestructura de átomos pesadosDispersión AnómalaSubestructura de átomos anómalos

Modificación de Densidad (mejora de las fases) Aplanamiento de solvente *Histogram matching* Promediado simetría no-cristalográfica Estructura Parcial Extensión de fases



Arthur L. Patterson(1902-1966)

## LA FUNCIÓN DE PATTERSON

Históricamente hablando, la primera solución al problema de las fases vino de la mano de Arthur Lindo Patterson. Basándose en la imposibilidad de resolver de un modo directo la función de la densidad electrónica, y tras su aprendizaje sobre convolución de transformadas de Fourier con el matemático Norbert Wiener, en 1934 Patterson introdujo una nueva función P(uvw). Esta nueva función, que define en un nuevo espacio (espacio de Patterson), puede considerarse sin exageración como el desarrollo singular más importante para la Cristalografía, tras el propio descubrimiento de los rayos X por Röntgen en 1895. Su elegante fórmula, conocida como la función de Patterson, supone una simplificación de la información contenida en la función de densidad electrónica, ya que suprime la información de las fases, y los módulos de los factores de estructura se sustituyen por sus cuadrados. Es, pues, una función que puede calcularse de inmediato a partir de la información experimental de que se dispone (las intensidades, que a su vez se derivan de los módulos de los factores de estructura)

 $\rho(xyz) = (1/V) \Sigma\Sigma\Sigma [F(hkl)] \cos 2\pi (hx + ky + lz - \Phi(hkl))$ electrónica

Función de densidad

 $P(uvw) = (1/V) \Sigma\Sigma\Sigma [F(hkl)]^2 \cos 2\pi (hu + kv + lw))$ 

Función de Patterson

## LA FUNCIÓN DE PATTERSON





## LA FUNCIÓN DE PATTERSON-PROPIEDADES





## LA FUNCIÓN DE PATTERSON PROPIEDADES







 $Z_i Z_j \longrightarrow$  facilidad para detectar átomos pesados

## LA FUNCIÓN DE PATTERSON PROPIEDADES





La simplificación es consecuencia de la pérdida de información que ocurre al pasar de:



uvw + uvw

## **REMPLAZAMIENTO ISOMORFO**





- |F<sub>P</sub>| Amplitudes cristal nativo
- |F<sub>PH</sub>| Amplitudes cristal con derivado
- |F<sub>H</sub>| Amplitudes átomo pesado



## **REMPLAZAMIENTO ISOMORFO, SIR**





## La fase $\alpha_{P}$ tiene una ambigüedad

## **REMPLAZAMIENTO ISOMORFO, MIR**





## La adición de un segundo derivado elimina la ambigüedad

## EL REMPLAZAMIENTO ISOMORFO



Incluir átomos pesados en el cristal nativo que queden en posiciones fijas de la molécula sin deformar ni la celdilla ni la conformación de la proteína.



**ii** LAS DIFERENCIAS EN INTENSIDADES DEBEN SER EXCLUSIVAMENTE DEBIDAS A LOS ATOMOS PESADOS !!

### **MÉTODO:**

- 1. Preparación de, al menos, un derivado (Hg, Au, Pt, U, Sm...Xe,Kr...Br,I).
- 2. Toma de datos de difracción para nativa y derivados.
- 3. Aplicación de función de Patterson y obtención coordenadas del metal.
- 4. Refinamiento parámetros átomo pesado y cálculo ángulos de fase.
- 5. Cálculo de mapas de densidad electrónica de la proteína.

## **EL REMPLAZAMIENTO ISOMORFO**





## **INCONVENIENTES:**

- **1.** Errores en  $|F_{PH}|$  y  $|F_{P}|$ .
- **2.** No isomorfismo (4% <  $d_{min}$ ).
- 3. Desorden en sitios minoritarios.
- 4. Escalado.



## **DISPERSIÓN ANÓMALA**

## **VENTAJAS:**

- 1. No hay problemas de isomorfismo.
- 2. Da mejores resultados a alta resolución

## DISPERSIÓN ANÓMALA:



Espectro de fluorescencia de un cristal de proteína con Se-Met.





## **DISPERSIÓN ANÓMALA**



MÉTODO:

1. Inclusión de dispersores anómalos en la estructura.



- 2. Medida del espectro de absorción.
- 3.Toma de datos de difracción de rayos X a diferentes longitudes de onda.
- 4. Medida de los pares de Friedel { (h k l ), (-h, -k -l)}

| Categoría                       | Dispersor Anómalo |  |
|---------------------------------|-------------------|--|
| Metaloproteínas                 |                   |  |
| metales de transición           | Fe. Cu. Zn. Mn    |  |
| otros metales                   | Ca. Mo            |  |
|                                 |                   |  |
| Remplazamiento de metales       |                   |  |
| Ca2+. Mg2+ por Lantánidos       | Tb.Ho.Yb          |  |
| Zn por Mercurio                 | На                |  |
|                                 |                   |  |
| Complejos con átomos pesados    | 5                 |  |
| derivados comunes               | Pt.Au.Ha.Pb.W.U   |  |
| Compuestos con "cluster"        | Ta.W              |  |
|                                 |                   |  |
| Proteínas modificadas           |                   |  |
| Selenometionina o selenocisteír | na Se             |  |
| Telurometionina                 | Те                |  |
| nucleótidos Bromados o Iodado   | s Brl             |  |
|                                 |                   |  |
| Crioprotectorescon haluros      |                   |  |
| Selenometionina o selenocisteír | na Brl            |  |
|                                 |                   |  |

## **REEMPLAZAMIENTO MOLECULAR**





Hemoglobin (ascaris suum)



Myoglobin (sperm whale)





Hemoglobin (*lucina pectinata*)



Leghemoglobin (lupinus luteus)



Hemoglobin (glycera dibranchiata) Hemoglobin (urechis caupo)

## Familia Estructural



## Percentage identity matrix

| 1flp  | 100                            |
|-------|--------------------------------|
| 1ithb | 22.8 100                       |
| 2gdm  | 21.2 18.0 100                  |
| 1mbc  | 18.5 15.1 17.0 100             |
| 2hbg  | <b>24.4</b> 23.1 19.9 22.1 100 |
| 1ash  | 13.3 10.1 15.8 15.9 14.6       |





- Completitud y calidad de los datos.
- Homología entre el modelo molecular y las moléculas reales que constituyen el cristal ( > 30%).
- Tamaño del modelo molecular respecto al contenido de la celdilla.

## **REEMPLAZAMIENTO MOLECULAR**





## Función de Rotación

 $\mathsf{R}(\alpha,\beta,\gamma) = \bigcap_{r=1}^{n} \varPhi_{1}(u) \ge \mathsf{P}_{2}(u_{r}) \, \mathrm{d}u$ 

## Obtención del modelo inicial











# $\rho$ (x y z) = f ( $I_{exp}$ , $\phi$ )





2. d. sen  $\theta$  = n.  $\lambda$ 









 $\rho$  (x y z) = f (I<sub>calc</sub>,  $\phi_{calc}$ )









siempre

 $\rho$  (x y z) = f (I<sub>calc</sub>,  $\phi$ <sub>calc</sub>)





siempre

 $\rho$  (x y z) = f (I<sub>calc</sub>,  $\phi_{calc}$ )



# CE CON

## siempre

# $\rho$ (x y z) = f (I<sub>calc</sub>, $\phi 1_{calc}$ )

# $\rho$ (x y z) = f (I<sub>exp</sub>, $\phi$ )

## El problema de las fases



 $\rho$  (x y z) = f (I<sub>exp</sub>,  $\phi$ )



## siempre

# $\rho$ (x y z) = f (I<sub>calc</sub>, $\phi 2_{calc}$ )



# $\rho (x y z) = f (I_{exp}, \phi)$



# $\rho$ (x y z) = f (I1<sub>exp</sub>, $\phi$ )



 $\rho$  (x y z) = f (I1<sub>exp</sub>-I2<sub>exp</sub>,  $\phi$ )





## siempre

# $\rho$ (x y z) = f (I<sub>calc</sub>, $\phi_{calc}$ )

# $\rho$ (x y z) = f (I<sub>exp</sub>, $\phi$ )

## El problema de las fases


## siempre

## $\rho$ (x y z) = f (I<sub>calc</sub>, $\phi_{calc}$ )

 $\rho$  (x y z) = f (I<sub>exp</sub>,  $\phi$ )